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ABSTRACT

Ground-based Microwave Radiometer can provide
a vertical profile of atmospheric variables such as
relative humidity, pressure and temperature with very
high time resolution (every couple of minutes). These
measurements can greatly help determine climate
conditions on a dynamic basis. In this research
exposition, we have utilized wavelets in conjunction
with neural networks to propose the model Modified
Wavelet Convolutional Neural Network (MCWNN)
to retrieve the vertical profile of the atmosphere.
As opposed to earlier literature, our model is very
lightweight with a sparse number of parameters.
Validation of the model on test data gave percentage
errors of 0.37%, 0.61% and 40.53% for the prediction
of pressure, temperature and relative humidity re-
spectively. We have also demonstrated the comparison
of our model with other architectures and previous
works to retrieve vertical profiles from MWR data

I. INTRODUCTION

The vertical profiles of atmosphere mainly temper-
ature and relative humidity needs to be monitored to
understand how climatic systems have evolved over time.
Temperature and humidity structure are key inputs for
numerical weather prediction models as they affect the
stability of the atmosphere. In addition to their temper-
ature and humidity profiles, knowledge of their time-
based changes is particularly useful for studies of the
atmospheric boundary layer.
Accurate atmospheric vertical temperature and humidity
profiles are currently provided through the worldwide
radiosonde network. Despite the excellent precision of
the data derived from this source, the observations are
limited by their expense and poor temporal resolution
(typically once or twice a day), which is insufficient to
capture the daily variation of the atmospheric profile. A
more contemporary method that may be used to collect
crucial information on weather profiles in the lower
part of the atmosphere is a ground-based Microwave
Radiometer (MWR). A MWR is a type of radiometer
that measures the energy that is emitted at microwave
frequencies, which range from 0.3 to 300 GHz. To de-
termine the distinctive emission spectra of atmospheres,
surfaces, or alien objects, they are often outfitted with
numerous receiving channels.
Since there is no closed function that directly extracts the
atmospheric profile from the MWR measurements, we
must make an educated approximation. Several strategies

have been tested in recent years to increase the accuracy
of retrieval algorithms in MWR methodologies. For the
model’s nonlinear interactions, which are necessary for
the recovery of humidity profiles, neural networks among
these techniques can provide a greatest framework. In
this research exposition, we investigated how to estimate
the model using wavelets in combination with neural
networks.

II. LITERATURE SURVEY

A. SAMEER

The team at Society for Applied Microwave Electron-
ics Engineering and Research (SAMEER) is in the pro-
cess of building the Microwave Radiometer for ground-
based retrieval of the vertical profile of atmospheric
features. There are two sides to the operation the Forward
model and the Inverse model. The fundamental measure-
ment obtained from MWR are brightness temperature
Tb at different microwave frequencies. The estimation
of brightness temperatures at different Frequency bands
from the Vertical Temperature and Humidity Profiles is
known as Forward Model. The forward Model mainly
comprises Radiative Transfer Equations and Weighting
Functions. These weighting functions are dependent on
Atmospheric Absorption and the Radiometric Channel
Frequency. In the frequency range from 20 to 200 GHz,
water vapour, oxygen, and cloud liquid are the main
sources of atmospheric emission and absorption. A visual
representation of the working of the Forward model is
depicted below.

Figure 1: Forward Model,Source

Here, absorption as water vapour is used for humidity
profiling we use the 20-30 GHz band which consists
of 8 channels. The absorption due to oxygen is used
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for temperature profiling and consists of 14 channels
in the range of 50-60 GHz. While the forward model
holds importance as a measurement of the microwave
radiation, we are more interested in the Inverse model
of the Microwave Radiometer (MWR) which retrieves
atmospheric profiles from measured brightness tempera-
ture.
On 14th of October I, Aditya Anavkar visited the
SAMEER lab along with Mr Kishore where we met the
team working on the project. They walked us through
the current progress of the project so far and their HOD
Mr Anil Kulkarni gave an in-depth breakdown of the
problem at hand which helped me understand various
aspects of the project. Mr Tanmay has explored using
Multivariate Linear Regression and ANN models for the
retrieval of the temperature profile from the MWR data
wherein they arrived at a final error of 3.3K. A major
limitation of the model was that it was built only for a
single height range for example 100m and a new model
would be required for every new height. The task of
building and improving models for retrieving pressure,
relative humidity and temperature was explored in this
exposition. The experience at SAMEER was gratifying
and helped us learn a lot; all these learnings helped
accelerate the research work.

B. Wavelet Pooling for Convolutional Neural Network

Travis Williams, Robert Li
The categorization of images and objects rises con-
tinually with the introduction of Convolutional Neural
Networks, but its steady use needs ongoing review and
updating of fundamental ideas. Typically, convolutional
layer operations are the focus of network regularisa-
tion algorithms, leaving pooling layer activities without
viable alternatives. In contrast to average pooling or
maximum pooling, the proposed research addresses the
use of discrete wavelet transformations in combination
with downsampling to provide arguably superior pooling
output. Data sets like CIFAR12 and MNIST13 are used
to test the concept. This approach reduces features in
a more structurally compact manner than pooling via
neighbouring regions, addressing the overfitting issue
that max-pooling encounters.
The two most widely used strategies for pooling are
average pooling and maximum pooling. In average pool-
ing, an area is chosen for the condensed feature map
based on its average value. Max pooling is the process
of choosing the condensed feature map of the region R
with the highest value. Max and average pooling both

have drawbacks while being efficient, straightforward
techniques. Depending on the data, max pooling may
remove some visual features. This occurs when the
important details are less intense than the minor ones.
Max pooling frequently overfits training data as well.
Depending on the data, average pooling may muddy up
important features in the data.

Figure 2: Shortcomings of Max and Average Pooling,
Source

Wavelets are used in the suggested pooling approach
to reduce the size of the feature maps. The wavelet
transform is suggested by the authors as a way to reduce
neighbourhood reduction artefacts. The method discards
the first-order subbands to capture the data compression
more naturally.
Their suggested solution performs within respectable
ranges of the other pooling methods in the SHVN dataset,
outperforms all other pooling methods in the MNIST
dataset, and beats all but one of the pooling methods in
the CIFAR-10 datasets. The inclusion of batch normali-
sation and dropout demonstrates how the suggested ap-
proaches respond to network regularisation. It surpasses
all but one of the pooling algorithms used in the CIFAR-
10 dataset’s non-dropout scenarios and comes close to
matching them in the SHVN dataset. Their findings are
consistent with those of earlier research showing that
no single pooling technique performs better than others
depending on the dataset and network configuration.
To improve efficiency, many networks also alternate
between pooling methods. It may be possible to change
the wavelet basis in this area in the future to investigate
which basis performs the pooling the best. Better image
feature reductions can be achieved by adjusting the up-
sampling and down-sampling parameters in the analysis
and synthesis.

C. Retrieval of Temperature and Relative Humidity Pro-
files from Microwave Radiometer

Xing Yan, Liang Chen, Nana Lou
The Microwave Radiometer device offers several benefits
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its continuous readings, which may offer high temporal
resolution data (data with a precision of 1 min or less),
and its ability to perform in most weather circumstances
except for heavy rainy days or other severe climatic
conditions. To recover temperature and humidity profiles
using data from a ground-based MWR, the authors of
this study have suggested a deep learning method termed
"BRNN". BRNN strives to reduce overfitting and offers
a larger capacity to characterise nonlinear correlations
between MWR measurements and atmospheric structure
information than the conventional backpropagation neu-
ral network, which has previously been used for MWR
profile retrieval. Four layers make up the created neural
network: an input layer, two hidden layers, and an output
layer. The gathered information, which consists of 17
features, is delivered to the input layer. The brightness
temperature Tb data from the MWR’s 14 channels make
up 14 of these features, while the surface pressure,
temperature, and RH make up three of them.
With a root-mean-square error of 1.70 K for temperature
and 11.72 for relative humidity, the radiosonde validation
of BRNN reveals a good retrieval capacity. Using the
BRNN approach, the temperature’s RMSE was measured
to be around 1 K below 2 km and less than 2 K below
8 km, although it had a higher RMSE in the upper
atmosphere (above 3.5 km). At 10 km, the RMSE of
BRNN was discovered to be 3.5 K. The RH bias of the
BRNN approach is constant below 3 km and reaches
up to 10 km. The article demonstrated that BRNN is an
effective method to retrieve the temperature and humidity
profiles.

III. PROBLEM STATEMENT

During the course project/ SRE we have been closely
working with SAMEER who is building the MWR device
and Mr Kishore. There are three atmospheric variables
namely pressure, temperature and relative humidity let
them be denoted by x1, x2, x3 and collectively denoted
by vector x⃗. The microwave radiometer has 22 channels
starting from 22.234 GHz to 58.800 GHz let them be
denoted by y1, y2, ... y22 and collectively denoted by
vector y⃗. The Forward Model y⃗ = Tforward (x⃗) is well
established and backed by physical laws i.e. given the
atmospheric variables we can determine the microwave
readings. The inverse model on the other hand x⃗ =
Tinverse (y⃗), deriving atmospheric condition given the
microwave radiometer reading is not straightforward and
thus we need to try to approximate it with machine
learning methods. This can be formulated as a multi-

dimensional vector to vector mapping where we are
mapping a vector of Tb from the MWR channels to
the vector of actual pressure, temperature and relative
humidity. The main problem encountered with using
MWR for vertical profiling is that it is a listening device
i.e. it listens to the radiation coming from the atmosphere
but has no explicit information about which height it
came from. Thus by some alternate method, we also need
to somehow incorporate height while building our model.
In the last few years, multiple approaches have been tried
to improve retrieval accuracy and methods for MWR. For
modelling nonlinear relationships, which are crucial for
retrieving vertical atmospheric profiles, neural networks
among these techniques are found to perform the best.

IV. UNIVERSAL APPROXIMATION THEOREM

In layman’s terms, a single hidden layer is sufficient
to model any continuous function with epsilon error
under the supremum norm. Let σ be any continuous
sigmoidal function. Then finite sums of the form

G(x) =
N∑
j=1

αjσ(wjx+ θj)

are dense in C(In).In other words given any f ∈
C(In), ϵ > 0,∃ a sum G(x) for which,

|G(x)− f(x)| < ϵ ∀x ∈ In, In = [0, 1]n

Where, C(In) : space of continuous function on In.
A function σ is sigmoidal if

σ(x) = 1 as x → ∞

= 0 as x → −∞

∃N, ∃wj , θj , αj for j = 1, 2, ..N s.t |G(x)−f(x)| < ϵ

A. Proof

Suppose we let wj → ∞ for j = 1, 2....N then

lim
wj→∞

σ(wjx) = 0 for x ≤ 0

= 1 for x > 0

lim
wj→∞

σ(wj(x− bj)) = 0 for x ≤ bj

= 1 for x > bj

H(x) = lim
w→∞

σ(wx)

Define H(x, b) = lim
w→∞

σ(w(x− b))



We can use two such functions to create a piece

P (x, b, δ) = H(x, b)−H(x, b+ δ)

Since f(x) is continuous limx→a f(x) = f(a) ∀a ∈ In

∃ an interval (aj , aj +∆x) s.t

|f(x)− f(aj)| < ϵ ∀x ∈ (aj , aj +∆x)

choose bj = aj , δj = ∆x, αj = f(aj)

|f(x)− f(aj)| < ϵ ∀ aj ≤ x ≤ aj + δj

|f(x)− αjP (x, bj , δj)| < ϵ

Repeat the process for x = aj+1 = bj + δj .
Construct G(x) =

∑N
j=1 αjP (xj , bj , δj). Hence as the

number of neurons increases exponentially ,ϵ decreases.

V. DATA AND METHODS

A. Details of Dataset

The acquired data from SAMEER Lab consisted of
two files, one meant for training the model and the other
for testing, both of them are identical with respect to
features. The data was recorded for 93 days; 22 MWR
channels corresponding to Tb readings, pressure, temper-
ature and relative humidity readings from radiosonde for
150 vertical heights for each day. The data was split in
two parts, training dataset which had 9389 rows and the
testing dataset consisted of 4350 rows. The initial dataset
had a lot of missing values and human error and thus
required cleaning and pre-processing before it could be
used to train the model. The features consist of height,
followed by 22 channel brightness temperature readings
and then Pressure, Temperature and Relative Humidity
for that height. The procedure for creating the dataset
was as follows -
The radiosonde device was allowed to move upward
in the atmosphere and when it reached height r, it
recorded the Pressure, Temperature and Relative Humid-
ity readings. At the same time the Microwave Radiometer

(MWR) recorded the Tb readings for 22 channels. Thus
we would have 22 channels and corresponding 3 atmo-
spheric variables for the height r. This was then repeated
for 150 heights every day. To get a better understanding

Figure 3: Pressure vs Atmospheric Height

of the data at hand, we plotted the weather features with
height for a single day, with the height going from 0 to
150 units.
The pressure graph shows a somewhat exponential de-
crease with an increase in height which fits with the
known pressure models. The temperature graph also
shows a decrease with an increase in height. We can
observe the schematic to show a very much linear pattern
which makes it an ideal candidate to be fit with a
Multivariate Linear Regression model

Figure 4: Temperature vs Atmospheric Height

The Relative Humidity in Figure 5 in the contrast to
the above two displays high volatility and variance, thus
posing difficulties while modelling.

B. Proposed Methodology

In the initial duration of the exposition, the proposed
hypothesis was to build a model to predict the ver-



Figure 5: Relative Humidity vs Atmospheric Height

tical atmospheric profile using only the MWR chan-
nels following the empirical form M(y⃗) = [p, t, rh] as
discussed in the problem statement. We read literature
regarding similar works and tried to build a model on
the hypothesis but the network failed to capture the data
appropriately. Later we proposed a slight modification
adding height as a parameter into the model during
the training phase, thus making the input a 23-length
vector comprising of height followed by 22 brightness
temperature from corresponding frequency channels of
the MWR. The model can be viewed mathematically
in the following line, where M denotes our model and
p,t,rh denote pressure, temperature and relative humidity
respectively.

M(h, y1, y2, ..., y22) = [p, t, rh] (1)

This change in feature selection gave a better result than
the first model but was largely underfitting the relative
humidity due to its high volatility. Following the sugges-
tion by Mr Kishore that all the channels in the MWR
are not equally useful for all variables, i.e. the frequency
channels from 20 to 30 GHz (K band) carry information
more relevant to relative humidity and frequency 50 to
60 GHz (V band) is more significant for temperature;
we changed the training features to accommodate only
the corresponding bands for the variables and changed
the network to predict variables one at a time making
it a vector to scalar mapping. Along with these, we
introduced level 2 wavelet decomposition and LSTM
layers in the network to get the final results.
We are interested in finding a function-to-function map-
ping for our problem, in particular. We will be trying
to approximate the function by using Neural networks
in conjugation with wavelets. In this exposition, we have
proposed the Modified Convolutional Wavelet NeuralNet

model (MCWNN) to retrieve the vertical atmospheric
profile. In addition to our proposed MCWNN method,
described earlier, we used several other machine-learning
models for the comparison such as the multivariate linear
regression model and a convolutional neural network
with various activation functions were also implemented
to compare results with.

Multivariate Linear Regression
In this method, we are trying to find a linear correla-

tion between atmospheric outputs and inputs namely 22
channels and height. Below is the generalized equation
for the multivariate regression model

y = β0 + β1.x1 + β2.x2 + . . . ..+ βn.xn (2)

Where n represents the number of independent variables,
β0 to βn represents the coefficients, and x1 to xn are the
independent variable. In our case, n will be equal to 23.

Multilayer Perceptron Neural Network

Figure 6: Multiperceptron Neural Network

The model comprises 2 hidden layers with 23 neurons
in the first layer and 3 neurons in the second layer which
has 552 +72 = 624 trainable parameters respectively.
We tried and tested the model with various activation
functions such as relu, sigmoid, mish and wavelets like
morlet and mexican hat(admissible wavelets).
Like the universal approximation theorem which states
that sigmoid function can model any continuous func-
tion we can use an admissible wavelet function which
can implement both CWT and inverse CWT but might
require more parameters to represent the function.

Wavelet Convolutional Neural Network
This comprises of Level-1 decomposition where we

train the corresponding scaling and wavelet branch inde-
pendently and separately using a CNN which has kernel



size = 30 to keep the number of training parameters
equal to 624 for fair comparison, with batch normaliza-
tion and Mish as activation function (which performed
best amongst the deep-learning models). Used a flatten
followed by a dense layer(3 neurons) in conjunction to
get back the 3 outputs.
Adding the height parameter to the training data was
crucial since the major weightage in predicting the output
was of the height parameter(amongst the other 22 chan-
nels). This proved true when we analyzed the weights
of the linear regression output for all the 3 atmospheric
outputs.
We tried to learn the subbands independently which gave
inferior results as compared to when we learnt all the
sub-bands serially i.e by concatenating the previously
learnt sub-band with the current sub-band. The ideology
behind using wavelet decomposition was to extract the
frequency spectrum-based relationship since the wavelet
band corresponds to a high-frequency spectrum and
the scaling function corresponds to a low-frequency
spectrum. Learning the sub-bands serially has an added
advantage in that a higher frequency spectrum component
may be correlated and dependent on a lower frequency
component hence might give us a better fit. Another logic
for using a DWT decomposition is the resemblance of
the downsampling to the pooling layer which is used for
dimension reduction and enables the model to learn a
particular subspace in a more abstract manner.

Figure 7: Wavelet Convolutional Neural Network

Modified Convolutional Wavelet Neural Network
We modified the initial wavelet network to include

Level-2 decomposition + LSTM + k-band,v-band train-
ing. LSTMs are used in place of CNN layers with the
idea that they would better fit the high variance data of
relative humidity. CNN was underfitting the data and was
not able to capture the shape appropriately.
One of the reasons for substituting the CNNs with LSTM
in this model was to make the model noise-resistant since
LSTMs are like recurrent neural networks which keep
the information of the past inputs (similar to a memory

model). After sufficient training, we found that relative
humidity which has a high variance had a better fit.
Since wavelets are locally restricted in time, the LSTMs
can serve as a good complement in terms of storing the
temporal contextual information.

Figure 8: Modified Wavelet Convolutional Neural Net-
work with LSTMs

VI. RESULTS AND DISCUSSION

The retrieval performance of all the models is com-
pared in Table I for pressure, temperature and relative
humidity. For each aforementioned model, the Mean
Absolute Error (MAE) and Percentage Error (PE) for
predictions on the validation data is illustrated. Our

Method MAE PE

Pressure

I 39.497 0.1231
II 38.558 0.1180
III 15.232 0.0401
IV 1.275 0.0037

Temperature

I 2.262 0.0091
II 2.590 0.0105
III 6.950 0.0296
IV 1.578 0.0061

Relative Humidity

I 14.365 0.4949
II 14.553 0.5467
III 15.098 0.5653
IV 11.063 0.4053

Table I: Comparison of different Models
The models are I: Linear Regression, II: Multilayer Perceptron
Neural Network, III: Wavelet Neural Network, IV: Modified Wavelet
Neural Network

proposed MCWNN achieves the best accuracy in both
MAE as well as PE when compared to all the models
across all atmospheric parameters. It especially outper-
forms the rest in pressure wherein it achieves an absolute
error of only 1.275 and a percentage error of 0.37%. It
is noticeable for linear regression to perform well for
predicting temperature with a percentage error of 0.9%



as was hypothesised earlier but performs unsatisfactorily
for other parameters indicating it is not a suitable fit for
them. Due to the high volatility of the relative humidity
all the models have a high bias in predictions. The graphs
for actual values versus predicted values for each weather
parameter are illustrated ahead.

Figure 9: Linear Regression Model Graphs

Figure 9 shows the linear regression model to fit sat-
isfactorily to temperature but cannot adapt to pressure
or relative humidity. On similar lines we see the Multi-
perceptron Neural Network to be under-fitting the atmo-
spheric variables. This can be partially attributed to the

network not being complex enough to learn the data due
to sparse number of trainable parameters.

Figure 10: Multiperceptron Neural Network Graphs

The initial Wavelet Neural Network performed better
in terms of pressure as compared to earlier models
but suffered in temperature. Thus we decided to make
changes in the architecture of the model. Finally, we have
the plots for the proposed model MWNN in Figure 12.
As we saw earlier it outperformed all the other models
and we can see the same in the graphs. An almost
perfect fit can be observed in the pressure graph between
actual and predicted values. The addition of second-level



Figure 11: Wavelet Neural Network Graphs

decomposition along with the introduction of Long Short
Term Memory (LSTM) in the network helped the model
adapt to the data better capturing the non-linearity in the
mapping and addressing the underfitting problem.

VII. CONCLUSION AND FUTURE SCOPE

In this study, a MWCNN was created for the recovery
of pressure, temperature, and relative humidity profiles
from ground-based radiometric measurements. In valida-
tion with radiosonde measurements, the results obtained
by MWCNN showed a good retrieval capability with an

Figure 12: Modified Wavelet Neural Net Graphs

percentage error of 0.37% for pressure, 0.91% for tem-
perature, and 40.53% for relative humidity. Additionally,
using the same training and test data, the effectiveness
of the various retrieval techniques was compared with
MWCNN wherein it outperformed all the other algo-
rithms in all aspects. This research showed that retrieving
vertical atmospheric profiles using MWCNN is a good
solution.
There is potential for improving the model further es-
pecially for predictions of relative humidity by taking a



deeper look into the data, their wavelet transforms and
relation between them. The usage of different wavelets
can also be explored to observe the effect it has in the
learning procedure. Currently we are only working with
a level-2 decomposition of the input, we can expand this
to higher levels and can also study each sub-band to gain
more insights. The architecture of the model also holds
potential to be refined.
We also made a few attempts at trying the vector-to-
vector mapping without the height parameter instead
of the vector to a scalar(as sir had suggested). We
used level-1 decomposition of the 22-channel data(11-
Analysis Low Pass,11-Analysis High Pass) to predict
the output which yielded a very high bias and hence
a very poor accuracy. This needs further debugging and
scrutinization to make it work and there is scope to try
various combinations of wavelet decomposition to see if
there is some correlation between different sub-bands of
input and output.
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