
1 INTRODUCTION

Hierarchichal Inference using Online Learning
Puranjay Datta, Guide: Prof. Sharayu Moharir

Master’s Thesis

1 Introduction

In this research paper [3], the authors delve into the concept of Hierarchical Inference (HI) within the context
of Deep Learning (DL) models and their deployment on edge devices. They introduce the terms ”S-ML” and
”L-ML” to distinguish between two types of DL models.

• S-ML Model: S-ML models refer to small-sized Deep Learning models that are optimized for deployment
on moderately powerful edge devices like mobile phones or microcontroller units. These models are
designed to minimize bandwidth, energy, and latency costs associated with remote inference in the cloud.
However, due to their smaller size, S-ML models might exhibit lower inference accuracy compared to
larger, more powerful models.

• L-ML Model: L-ML models, on the other hand, are larger and more sophisticated DL models that can
be deployed on Edge Servers (ESs). These models offer higher inference accuracy compared to S-ML
models, but they come with higher memory and computational requirements.

The authors propose the concept of Hierarchical Inference (HI) as a way to combine the strengths of both S-ML
and L-ML models while mitigating their limitations. The HI framework suggests that an edge device (ED)
with an S-ML model should first perform an inference locally. If the S-ML inference is incorrect, the sample
can be offloaded to an L-ML model on an Edge Server (ES) for more accurate inference.The challenge lies in
making the decision to offload. To address this, the authors introduced a novel HI meta-learning framework.
The framework involves determining a threshold value based on the maximum probability value of the S-ML
output. If this value is above the threshold, the local inference is accepted; if below, the sample is offloaded to
the L-ML model. The decision-making process incorporates a cost structure to optimize the trade-off between
accuracy and latency.

The authors present two scenarios for feedback:

• Full Feedback Scenario: In this scenario, local feedback is available, enabling the ED to determine the
correctness of its inference.

• No-Local Feedback Scenario: Here, local feedback is not available, introducing additional challenges in
decision-making.

To tackle these challenges, the authors design algorithms: HIL-F (HI Learning with Full Feedback) and HIL-N
(HI Learning with No-Local Feedback). These algorithms use dynamic non-uniform discretization and leverage
the structural properties of the HI problem to achieve effective decision-making while considering feedback
availability.The paper showcases that the proposed algorithms perform well in terms of regret bounds, compu-
tational complexity, and practical evaluation using real datasets for image classification applications. Overall,
the study suggests a comprehensive approach to leveraging DL models on edge devices while maintaining a
balance between accuracy and efficiency.



2 SYSTEM MODEL AND PROBLEM STATEMENT

2 System Model and Problem Statement

Each data sample is assigned an index t that indicates its order of arrival in the sequence. When the S-ML
model processes a sample, it generates a probability distribution over {0, 1} class. pt represents the highest
probability in this distribution, indicating how confident the S-ML model is in classifying the sample. A binary
random variable Yt is introduced to denote the cost associated with the classification of sample t. If Yt is 0,
it means that S-ML correctly classified the sample, and there’s no cost incurred. If Yt is 1, it implies that the
classification was incorrect, resulting in a cost. β represents this cost of offloading a sample to the Edge Server
(ES). This cost includes factors like energy spent in transmission and reception.

Dt =

{
Do not offload if pt ≥ θt

Offload if pt < θt
(1)

Therefore, given pt, choosing threshold θt results in a cost/loss l (θt, Yt) at step t, given by

l0 (θt, Yt) =

{
fn.Yt pt ≥ θt,

β pt < θt.
(2)

l1 (θt, Yt) =

{
fp.Yt pt ≥ θt,

β pt < θt.
(3)

where fn, fp are constants which represent the costs associated with false negatives and false positives, respec-
tively. A false negative occurs when the S-ML model’s output is 0 but the true classification by the L-ML
model is 1. On the other hand, a false positive happens when the S-ML output is 1, while the L-ML model’s
true classification is 0.

L (θ∗, Y ) =

n∑
t=1

li (θ
∗, Yt) , i ∈ {0, 1}, if S-ML output is {0, 1} at sample t respectively. (4)

where θ∗ need not necessarily be unique and is given by

θ∗ = argmin
θ∈[0,1]

n∑
t=1

li (θ, Yt) . (5)

Given a sequence Y , we now define the regret under an arbitrary algorithm π as

Rn = Eπ[L(θ, Y )]− L (θ∗, Y ) (6)



3 BACKGROUND AND PRELIMINARY ANALYSIS

3 Background and Preliminary Analysis

3.1 Hedge / Prediction with Expert Advice(PEA) [1]

Algorithm 1 Hedge Algorithm

1: W1(1)← 1
2: for t = 1 to T do
3: for i = 1 to k do
4: lt(i)← loss of expert i
5: end for
6: it ∼ Expert index selected by drawing from pt(i) =

Wt(i)∑k
j=1 Wt(j)

7: lt(it)← Loss incurred at time t
8: for i = 1 to k do
9: Wt+1(i)←Wt(i) · e−εlt(i) ▷ Weight update

10: end for
11: end for

The following theorem provides a guarantee of the performance of the Hedge algorithm. Below, we use the
notation [K] := {1, 2, · · · ,K}

Theorem 3.1. (Hedge Algorithm Performance). The hedge algorithm achieves performance described by:

E

[
T∑
t=1

ℓt (it)

]
≤ min

i

T∑
t=1

ℓt(i)︸ ︷︷ ︸
(a)

+ ϵ ·
T∑
t=1

E
[
l2t (it)

]
︸ ︷︷ ︸

(b)

+
logN

ϵ︸ ︷︷ ︸
(c)

.

• (a) denotes the minimum loss incurred if a fixed arm were repeatedly pulled throughout the time horizon
[T ].

• (b) describes the sum of the second moments of the losses. It can be trivially upper-bounded by T if the
losses lt(i) are uniformly bounded. When more structure regarding lt(i) is known, the second moment
can be more explicitly computed, resulting in a tighter upper bound for this term. This idea will appear
in the upcoming discussion of the Exp3 algorithm.

• (c) This term describes how, as the number of experts, N , increases, it becomes more difficult to achieve
performance close to that of the best expert. However, this term scales only sub-linearly in N , and thus
will not deteriorate the algorithm’s performance too much. This term, together with the ”trivial” bound
for the term in (b), yields a performance of Θ(

√
T logN) for an appropriately chosen ε > 0.



3.2 HIL-F using a single expert [3] 3 BACKGROUND AND PRELIMINARY ANALYSIS

3.2 HIL-F using a single expert [3]

To determine a suitable threshold θt in round t, we draw inspiration from the discrete PEA, where an expert’s
weight is calculated using the exponential of scaled cumulative losses incurred for potentially selecting that
expert. We expand on this idea and define a continuous weight function wt(θ) as follows:

wt+1(θ) = e−η
∑t

τ=1 l(θ,Yt) (7)

= e−η
∑t

τ=1 l(θ,Yt)e−ηl(θ,Yt) (8)

= wt(θ)e
−ηl(θ,Yt), (9)

where η > 0 is the learning rate. At each round t, normalized weights yield the probability distribution for
selecting the next threshold θt+1, aiding in learning the system. However, two challenges arise: (i) finding
thresholds that adhere to this distribution, and (ii) computing the integral. While direct numerical methods
can address these challenges, they come with high computational costs. Instead, we leverage the observation
that the final decision (to offload or not) depends only on the relative positions of θt and pt, but not directly
on θt. Thus, we define qt as the probability of not offloading, i.e., the probability that θt is less than pt, using
the distribution given by the normalized weights:

qt =

∫ pt
0 wt(x)dx∫ 1
0 wt(x)dx

. (10)

Having addressed the first challenge, we seek efficient methods for computing the integral in qt. Note
that

∑t
τ=1 l(θτ , Yτ ) can take on three different values (0, 1, or β) in each step, without a necessary pattern,

precluding direct analytical integration. To overcome this, we use the result of Lemma 4.1, transforming the
integral into a summation by discretizing the domain [0, 1] into a finite set of non-uniform intervals.

The non-uniform discretization proposed by this lemma is incremental, adding new intervals in each round.
After n rounds, the structure of the weight function is as follows. Let p0 = 0 and pN = 1, where N is the
number of intervals formed in [0, 1] by the sequence of probabilities pn. Here, we have N ≤ n+1 due to repeated
probabilities that do not result in new intervals. Denote these intervals as Bi = (p[i − 1], p[i]), 1 ≤ i ≤ N ,
where p[i] is the i-th smallest distinct probability in pn. Let mi, 1 ≤ i ≤ N , be the number of times p[i] is
repeated in pn. For instance, N = n + 1 and p[i] = pi if mi = 1 for all i. Finally, let Y [i], 1 ≤ i ≤ n, be
the i-th element in the ordered set of local inference costs, sorted according to the increasing values of the
corresponding probability pi. Note that i in Y [i] ranges up to n, while i in p[i] ranges only up to N , as any
two local inference costs Yj and Yk associated with repeated probability values pj = pk are two distinct but
independent and identically distributed random variables.

In this section, we consider the full-feedback scenario, where the algorithm receives the ground truth Yt
for all the samples, including those that are not offloaded by accepting the S-ML inference. For this scenario,
we present the HIL-F algorithm in Algorithm 1. Algorithmic rules for the parameter updates are provided in
Section 7. When given pt, we compute qt, the probability of not offloading. After the decision is made using
qt, costs are received, and the weights are updated using (4) and (5). For simplicity, we denote the expected
cost received by HIL-F in round t as l̄(θt, Yt), which is given by

l̄(θt, Yt) = EQt [l(θt, Yt)] (11)

= Ytqt + β(1− qt). (12)

Here, the expectation is with respect to the probability distribution determined by qt. Additionally, let L(θ, Ȳ )
denote the total expected cost after n rounds. In Theorem 5.1, we provide a regret bound for HIL-F.

Theorem 3.2. For η > 0, HIL-F achieves the following regret bound:

Rn = L̄(θ∗)− L(θ, Ȳ ) ≤ 1

η
ln

1

λmin
+

nη

8
,

where λmin is the minimum interval length and can be approximated by 1
n+1 .



3.3 Hedge Analysis for Constant Learning Rate [1] 3 BACKGROUND AND PRELIMINARY ANALYSIS

3.3 Hedge Analysis for Constant Learning Rate [1]

In the context of the hedge setting, the task of the learner involves making decisions in each round t = 1, 2, . . .
with respect to a weight vector wt = (wt,1, . . . , wt,K) across K ”experts.” Consequently, Nature reveals a
K-dimensional vector containing the losses of the experts ℓt = (ℓt,1, . . . , ℓt,K) ∈ RK . The learner’s loss is
represented by the dot product ht = wt · ℓt, which captures the expected loss if the learner employs a mixed
strategy that selects expert k with probability wt,k. We denote cumulative versions using capital letters, and

vectors are denoted in bold. Hence, LT,k =
∑T

t=1 ℓt,k represents the cumulative loss of expert k up to round T ,

and HT =
∑T

t=1 ht stands for the learner’s cumulative loss, often referred to as the ”Hedge loss.”
The performance of the learner is evaluated based on her regret, which quantifies the difference between

her cumulative loss and the cumulative loss of the best expert:

RT = HT − L∗
T , where L∗

T = min
k

LT,k.

To analyze the Hedge strategy effectively, a pivotal concept is the mix loss approximation, defined as:

mt = −
1

η
ln(wt · e−ηℓt),

where mt accumulates to MT =
∑T

t=1mt. This approximation streamlines the analysis and finds relevance
in various proof techniques. When considering Hedge and mix loss for η = ∞, allowing η to tend to infinity
extends their definitions. Specifically, Hedge with η = ∞ results in a uniform distribution over the experts
with the smallest cumulative loss up to time t, while the mix loss mt converges to L∗

t − L∗
t−1 as η approaches

infinity.
In approximating Hedge loss ht with mix loss mt, the discrepancy ht−mt is denoted as the mixability gap

δt. This error constitutes a fundamental notion in the analysis of Hedge-type algorithms and plays a vital role
in sequential prediction scenarios.

The objective is to bound the mixability gap δt, often achieved using tools such as Hoeffding’s bound
on the cumulant generating function. The cumulative mixability gap ∆T = δ1 + . . . + δT accounts for the
error introduced by approximating Hedge loss with mix loss. The regret RT for the Hedge strategy is then
decomposed into the contribution from the mix loss, MT − L∗

T , and the cumulative approximation error, ∆T :

RT = (MT − L∗
T ) + ∆T .

The Mix Loss with Constant Learning Rate lemma encapsulates fundamental properties of this analysis:

1. Mix loss is consistently lower than Hedge loss (mt ≤ ht), resulting in δt ≥ 0. For losses in the range [0,
1], mt ≥ 0 and ht ≤ 1, implying δt ≤ 1.

2. Cumulative mix loss MT is expressed as MT = − 1
η ln(w1 · e−ηLT ).

3. Cumulative mix loss approximates the loss of the best expert: L∗
T ≤MT ≤ L∗

T + lnK
η .

4. Cumulative mix loss MT decreases monotonically as η increases.

To bound Hedge loss, a well-known upper bound for the mixability gap, derived using Hoeffding’s bound
on the cumulant generating function, is employed. The relation mt ≤ ht is leveraged to establish δt ≤ η

8 .

Consequently, ∆T ≤ Tη
8 . When combined with the bound MT −L∗

T ≤
ln(K)

η from mix loss property 3, it results
in the following overall regret bound:

RT = (MT − L∗
T ) + ∆T ≤

ln(K)

η
+

Tη

8
.



3.4 Adaptive Hedge [2] 3 BACKGROUND AND PRELIMINARY ANALYSIS

The optimal learning rate η∗ =

√
8 ln(K)

T balances the two terms and yields a regret bound of
√
T ln(K)/2,

matching the worst-case regret lower bound established in the literature. This optimal rate can be employed
when the time horizon T is known in advance. In scenarios where T is unknown, the doubling trick can be
utilized, albeit it may result in a larger constant factor in the leading term of the regret bound.

3.4 Adaptive Hedge [2]

Previous Section Recap and Adaptive Learning Rate: In the previous section, we divided the regret for the
Hedge algorithm into two components: MT − L∗

T and ∆T . We then derived bounds for both components.
While other Hedge approaches typically balance these components by considering an upper bound on ∆T and
tuning the learning rate η accordingly, AdaHedge takes a different approach. Instead of relying on an upper
bound for ∆T , AdaHedge aims to equalize ∆T and ln(K)/η directly. Since the cumulative mixability gap ∆T

is monotonically increasing and can be tracked online, it’s possible to adapt the learning rate directly based
on ∆T . The doubling trick is a simple method to achieve this balance: in each subsequent block, the learning
rate is halved, and a new block begins when the observed cumulative mixability gap ∆T surpasses the mix loss
bound ln(K)/η. This ensures that these two quantities are equal at the end of each block. An earlier version
of AdaHedge employed this approach (Van Erven et al., 2011). However, a more elegant method involves
adjusting the learning rate over time using the following formula:

ηtah =
lnK

∆t−1
ah

(13)

(Here, note that η1ah =∞.) The definitions of weights and the mix loss (equations (14) and (15)) are modified
to incorporate this variable learning rate:

wt,k
ah = w1,k

ah e
−ηtahLt−1,k (14)

w1
ah =

(
1

K
, . . . ,

1

K

)
(15)

mt
ah = − 1

ηtah
ln
(
wt
ahe

−ηtahℓt
)

(16)

Lemma 3.3. Learning Rate Strategy Comparison:Consider any strategy for selecting learning rates, denoted
as ”dec”, where η1 ≥ η2 ≥ . . . holds. Then, the cumulative mix loss for the ”dec” strategy does not surpass the
cumulative mix loss incurred by the strategy employing the final learning rate ηT from the beginning:

MT
dec ≤M(ηT )

T

Lemma 3.4. AdaHedge Regret: The regret of AdaHedge is denoted as RT
ah, and it can be expressed as follows:

RT
ah = MT

ah − L∗
T +∆T

ah ≤ 2∆T
ah.

Lemma 3.5. (Bernstein’s Bound):Let ηt = ηalg,t ∈ (0,∞) denote the finite learning rate chosen for round t by
any algorithm denoted as alg. For losses in the range [0, 1], the mixability gap δalg,t satisfies:

δalg,t ≤ eηt − ηt − 1 ≤
valg,t
ηt

Furthermore, valg,t ≤ v̂alg,t(1− v̂alg,t) ≤ 1
4 .

Lemma 3.6. For losses in the range [0, 1], the cumulative mixability gap of AdaHedge satisfies:

(∆ah,T )
2 ≤ Vah,T lnK +

(
1 +

2

3
lnK

)
∆ah,T .



3.5 Another variant of ada hedge-doubling trick 3 BACKGROUND AND PRELIMINARY ANALYSIS

Theorem 3.7. For losses in the range [0, 1], the regret of AdaHedge is bounded by:

Rah,T ≤ 2
√
Vah,T lnK +

4

3
lnK + 2.

Lemma 3.8. Suppose Hah,T ≥ L∗,T . For losses in the range [0, 1], the cumulative loss variance for AdaHedge
satisfies:

Vah,T ≤ L∗,T (T − L∗,T ) + 2∆ah,T .

Theorem 3.9. Theorem 8:For losses in the range [0, 1], AdaHedge’s regret is bounded by:

Rah,T ≤ 2
√

L∗,T (T − L∗,T )
√
T lnK +

16

3
lnK + 2.

3.5 Another variant of ada hedge-doubling trick

The proofs are simpler and bounds are less strong compared to the above ada hedge.

Algorithm 2 AdaHedge Algorithm

Require: ϕ > 1
η ← ϕ
for t = 1, 2, . . . do

if t = 1 or ∆ ≥ b then
Start a new segment
η ← η/ϕ

b←
(

1
e−1 + 1

η

)
ln(K)

∆← 0
w = (w1, . . . , wK) =

(
1
K , . . . , 1

K

)
end if
Make a decision
Output probabilities w for round t
Actions receive losses ℓt
Prepare for the next round
∆← ∆+ w · ℓt+1+

1
η ln(w · e

−ηℓt)

w ← w1·e−ηℓ1t,...,wK ·e−ηℓKt

w·e−ηℓt

end for



4 HIL-F USING SEPARATE SET OF EXPERTS

4 HIL-F using separate set of experts

Algorithm 3 The HIL-F Algorithm for Full Feedback

1: function HIL-F(data, β, CLASSID, η, repeats)
2: Set w1(θ) = 1 for all θ ∈ [0, 1]
3: Set v1(θ) = 1 for all θ ∈ [0, 1]
4: Set N = 1
5: for every sample in round t = 1, 2, . . . do
6: S-ML outputs pt and classMax id
7: if classMax id = 1 then
8: Compute qt using (10) and generate Bernoulli random variable Qt with P (Qt = 1) = qt
9: f = fp

10: else
11: Compute qt using (11) and generate Bernoulli random variable Qt with P (Qt = 1) = qt
12: f = fn
13: end if
14: if Qt = 1 then
15: Accept the S-ML inference and receive cost f.Yt
16: else
17: Offload the sample and receive cost β
18: end if
19: Find the loss function using (7)
20: if pt is not a repetition then
21: Update the intervals by splitting the interval containing pt at pt. Increment N by 1
22: end if
23: Update the weights for all intervals using (4), based on the interval positions with respect to pt
24: end for
25: end function

4.1 Data Generation

A synthetic dataset is generated to emulate both large and small-scale machine learning models. This dataset
comprises three columns: the mode probability pt, the S-ML output, and the corresponding ground truths.

The initial step involves determining the ratio of 1’s and 0’s in the ground truth, denoted as p ground truth.
Subsequently, mode probabilities are assigned to samples with ground truths as 1 using the parameter x, which
governs the proportion of samples where pt > θ∗1. Similarly, another parameter y controls the ratio of samples
where pt > θ∗0 for samples with ground truths as 0.

In the subsequent analysis, we focus solely on samples with a ground truth value of 1. For these samples,
the determination of the S-ML output involves assessing whether to flip the ground truth based on the assigned
pt value. If pt > θ∗1, the S-ML output is assigned as 1 with a high fixed probability. Conversely, if pt is below
θ∗1, the output is assigned as 0 with a fixed high probability. This process is repeated for samples with a ground
truth of 0, based on a similar rationale.



4.2 Effect of the false postive cost fp 4 HIL-F USING SEPARATE SET OF EXPERTS

4.2 Effect of the false postive cost fp

Figure 1: Average cost vs false postive cost fp

The provided graphs have been created by maintaining a constant value of fn = 1 and β = 0.5, while
adjusting the parameters fn+ tn and fp. y co-ordinate of each graph represents an average of costs obtained
from various combinations of x and y as defined in the data generation process.x defines the distribution of
fp, tp. From the analysis of the graphs, we observe that as fp+ tp increases, the loss incurred by the standard
experts experiences a noticeable degradation compared to the separate experts approach. Conversely, for
scenarios characterized by lower false positive costs and higher ratios of fn+ tn, the standard experts tend to
outperform the separate experts strategy.



4.3 Effect of the ratio of number of 0′s in ground truth 4 HIL-F USING SEPARATE SET OF EXPERTS

4.3 Effect of the ratio of number of 0′s in ground truth

Figure 2: Average cost vs number of 0′s in ground truth

The graphs have been generated by taking avaerage of costs across different combinations of x, y keeping
other parameters as defined. For β = 0 the separate experts’ performace is worse than normal experts for all
fn + tn. But as β = 0.5, 0.9 increaseses the performace starts improving and is better than normal experts.
Another observation is the difference in performance is more as fn+ tn increases to 1 or fn+ tn decreases to 0.



4.4 Effect of Offloading cost β 4 HIL-F USING SEPARATE SET OF EXPERTS

4.4 Effect of Offloading cost β

Figure 3: Comparison of Graphs



REFERENCES REFERENCES

References

[1] Steven De Rooij, Tim Van Erven, Peter D Grünwald, and Wouter M Koolen. Follow the leader if you can,
hedge if you must. The Journal of Machine Learning Research, 15(1):1281–1316, 2014.

[2] Tim Erven, Wouter M Koolen, Steven Rooij, and Peter Grünwald. Adaptive hedge. Advances in Neural
Information Processing Systems, 24, 2011.

[3] Vishnu Narayanan Moothedath, Jaya Prakash Champati, and James Gross. Online algorithms for hierar-
chical inference in deep learning applications at the edge. arXiv preprint arXiv:2304.00891, 2023.


	Introduction
	System Model and Problem Statement
	Background and Preliminary Analysis
	Hedge / Prediction with Expert Advice(PEA) de2014follow
	HIL-F using a single expert moothedath2023online
	Hedge Analysis for Constant Learning Rate de2014follow
	Adaptive Hedge erven2011adaptive
	Another variant of ada hedge-doubling trick

	HIL-F using separate set of experts
	Data Generation
	Effect of the false postive cost fp
	Effect of the ratio of number of 0's in ground truth
	Effect of Offloading cost 


