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Abstract
We study a variant of the experts problem in which new experts are revealed over time according to
a stochastic process. The experts are represented by partitions of a hypercube B in d-dimensional
Euclidean space. In each round, a point is drawn from B in an independent and identically dis-
tributed manner using an unknown distribution. For each chosen point, we draw d orthogonal
hyperplanes parallel to the d faces of B passing through the point. The set of experts available in
a round is the set of partitions of B created by all the hyperplanes drawn up to that point. Losses
are adversarial and the performance metrics of interest include expected regret and high probability
bounds on the sample-path regret. We propose a suitably adapted version of the Hedge algorithm
called Hedge-G, which uses a constant learning rate and has O(

√
2dT lnT ) expected regret, which

is order-optimal. Further, we show that for Hedge-G, there exists a trade-off between choosing
a learning rate that has optimal expected regret and a learning rate that leads to a high probabil-
ity sample-path regret bound. We address this limitation by proposing AdaHedge-G, a variant of
Hedge-G that uses an adaptive learning rate by tracking the loss of the experts revealed up to that
time. For ϵ > 0, AdaHedge-G simultaneously achieves O(T

ϵ
2

√
T lnT ) sample-path regret, with

probability at least 1− T−ϵ, and O(ln(lnT )
√
T lnT ) expected regret.

1. Introduction

In the standard decision-theoretic online learning studied by Freund and Schapire (1997), there are
N experts (or actions) at the disposal of a learner. In round t, the learner chooses a probability
mass function pppt over the set of experts {1, 2, . . . , N}, an adversary reveals the loss vector lllt =
(lt(1), . . . , lt(N)) ∈ [0, 1]N , and the learner incurs an (expected) loss of ⟨pppr, lllr⟩. The total loss
incurred by the learner after T rounds is LT =

∑T
r=1⟨pppr, lllr⟩, and the total loss of choosing expert

i in all the rounds is LT (i) =
∑T

r=1 lr(i). The learner aims to minimize its cumulative regret up to
round T , defined as LT −mini LT (i).

The celebrated Hedge algorithm by Freund and Schapire (1997) uses a parameter called the
learning rate η ≥ 0, assigns weight wt(i) = e−ηLt−1(i) for each expert i based on the observed
cumulative loss, and chooses expert i with probability pi = wt(i)/Wt, where Wt =

∑t
τ=1wτ (i).

For a suitable choice of η, Hedge has O(
√
T lnN) regret. Subsequent works explored improved

algorithmic techniques seeking regret bounds where the dependency on T is replaced by metrics that
capture the variability of the sequence of loss vectors lllt Cesa-Bianchi et al. (2007); Hazan and Kale
(2010); Chiang et al. (2012). In contrast to these works, Gofer et al. (2013) studied the dependency
of the regret bound on the number of experts N . They introduced the branching experts setting,
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where new experts may be revealed in each round, and the cumulative loss of any new expert is
either equal or close to the cumulative loss of one of the existing experts. Gofer et al. (2013)
proposed an algorithm that has O(

√
TNT ) regret, where NT is the number of experts revealed in

the first T rounds.

In this paper, we study the stochastically partitioning experts setting, a stochastic variant of
the branching experts setting, where the experts revealed in each round are new sub-partitions of a
hypercube B in d-dimensional Euclidean space1. In each round t, the environment draws a point
i.i.d. from B using a fixed (unknown) distribution. For each chosen point, we draw d orthogonal
hyperplanes parallel to the d faces of B passing through the point. The set of experts revealed up
to round t is the set of partitions of B created by the intersection of the d orthogonal hyperplanes
passing through each of the t points drawn up to that round, resulting in (t + 1)d experts2. The
partition of experts is illustrated in Fig.1. In each round, the environment only reveals the losses of
the existing experts and we allow the losses to be adversarial. We consider the perfect clone setting
introduced in Gofer et al. (2013), where a new expert is a perfect clone of its parent expert, i.e.,
the cumulative loss of a new partition is equal to the cumulative loss of its parent partition. Once
the new expert is revealed, its cumulative loss evolves independently from its parent expert in the
subsequent rounds. We note that, in contrast to the branching experts setting where NT is bounded
and is independent of T , in the partitioning experts setting, the number of experts in round T is
(T + 1)d.

1.1. Motivation

The above setting with B = [0, 1] arises in an online learning framework recently studied by
Moothedath et al. (2024); Beytur et al. (2024) for ML classification applications that use Deep
Learning (DL) inference with a reject/offload option. In this framework, in each round t, a data
sample (e.g., image) is presented by the environment. The data sample is input to a pre-trained
DL model which outputs softmax values corresponding to different classes. The learner computes
a confidence metric xt ∈ [0, 1] using these softmax values3. The learner accepts the classification
in round t if the confidence metric xt is above a threshold, which the learner aims to learn. If the
learner accepts the classification, it incurs a loss of zero when the classification is correct, and a loss
of one otherwise. If the learner rejects or offloads the classification task, it incurs a cost c ∈ [0, 1].
In this problem, the experts are the partitions of B = [0, 1] created by the xt values corresponding
to the data samples that arrive over time Moothedath et al. (2024). If a learner chooses a partition
in round t, then the classification of the DL model is accepted if xt is greater than the supremum
of the chosen interval, else the classification is rejected and the data sample is offloaded. For this
problem, the partitions are illustrated in Fig.1(a).

1. The algorithms and the analysis in this work apply to any convex region in the d-dimensional Euclidean space, but
for the ease of exposition, we limit B to hypercube.

2. Since the points are drawn i.i.d. from Euclidean space, the probability of a chosen point lying on one of the d
hyperplanes parallel to the faces of B passing through another point drawn in some other round is zero. Thus, in
round t, there will be (t+ 1)d experts with probability one.

3. A typical choice for the confidence metric is the maximum softmax value as the data sample is typically classified
into the class with the maximum softmax value.
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Figure 1: We show the partitioning experts setting for the first three rounds, for one dimension
(d = 1), on a bounded interval in (a), and for two dimensions (d = 2) on a square region
in (b). The new point and the new expert indices in each round are highlighted using bold
fonts.

1.2. Our Contributions

We study the novel stochastically partitioning experts setting. We propose two algorithms, namely,
Hedge-G, a natural extension of the Hedge algorithm for the growing experts setting, and AdaHedge-
G, an adaptive learning rate variant of Hedge-G. We prove the following results on the regret of the
proposed algorithms.

– Even though the number of experts grow as (t+1)d, we show that Hedge-G has O(
√
2dT lnT )

expected regret, which is order-optimal in T . Compare this with the Hedge algorithm which
has O(

√
dT lnT ) regret in the setting where all the (T + 1)d experts are known apriori.

– We also show that Hedge-G achieves O(T
ϵ
2

√
T lnT ) sample path regret, with probability at

least 1− T−ϵ.

– Hedge-G uses a fixed learning rate. We show that there is a trade-off between choosing a
rate that gives the optimal expected regret guarantee and a rate that gives a useful sample-
path regret guarantee. To address this limitation of Hedge-G, we propose the AdaHedge-
G algorithm, a variant of the Hedge-G algorithm that uses an adaptive learning rate. We
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show that AdaHedge-G simultaneously achieves O(ln(lnT )
√
T lnT ) expected regret, and

O(T
ϵ
2

√
T lnT ) sample-path regret, with probability at least 1− T−ϵ, for ϵ > 0.

2. Related Work

The decision-theoretic online learning problem is a variant of the classical prediction with expert
advice Littlestone and Warmuth (1994); Vovk (1995) and has received a lot of attention in the past
three decades. Variants of this problem, where the set of experts is very large were studied by
Chaudhuri et al. (2009); Chernov and Vovk (2010); Luo and Schapire (2015). In Chaudhuri et al.
(2009), the authors proposed a parameter-free version of Hedge and showed that it outperforms the
classical Hedge algorithm when the set of experts is large. The focus in Chernov and Vovk (2010)
was on the setting where multiple experts can be near-clones of each other. For this setting, the
authors provided regret guarantees as a function of the effective number of experts, i.e., the number
of unique experts available to the learner. The algorithm proposed in Luo and Schapire (2015) is
agnostic to the number of experts, and therefore, can be used in a setting where the number of
experts is unknown/changing.

As mentioned before, our partitioning experts setting is closely related to the branching experts
setting first studied by Gofer et al. (2013). In this work, even though the number of experts increases
with time, NT , the total number of experts revealed after T rounds is assumed to be large but finite.
Our setting differs from the branching experts setting as we have an uncountably infinite set of
experts from which (T+1)d experts are revealed in T rounds. Another difference is that the number
of new experts revealed in round t is (t+1)d− td. The branching experts setting is also the focus in
Wu et al. (2021). In addition to the setting in Gofer et al. (2013) where the losses are generated by
an adversary, Wu et al. (2021) also considered the setting where the losses are stochastic processes
with unknown distributions. The authors proposed a policy that is optimal for both adversarial and
stochastic losses.

In Cohen and Mannor (2017), the focus was on the setting where all the experts are known
apriori and their losses are revealed in each round, but the number of experts is large, potentially
even infinite. The focus here was on identifying a small set of experts such that all other experts
are close to any one expert in this small set in terms of their cumulative loss. The authors proposed
an algorithm with provable performance guarantees that depend on the ϵ-covering number of the
sequence of loss functions. They also proposed a method to compute the optimal ϵ in hindsight.

In Mourtada and Maillard (2017), new experts are revealed over time. The key contribution in
this work is two-fold. The authors considered multiple definitions of regret, namely shifting regret
and sparse shifting regret to account for the fact that the expert set is growing over time. They
designed computationally inexpensive policies with order-optimal regret performance for all the
regret definitions considered. The proposed algorithms are anytime and parameter-free. In Gyorfi
et al. (1999), the set of experts grew at an exponentially decaying rate and the goal was to make
predictions about a stationary ergodic time series. In contrast to this work, in our setting, experts
arrive at a much faster rate. In Hazan and Seshadhri (2009); Shalizi et al. (2011), the focus was on
the prediction of a non-stationary time series using a growing set of experts.

One of the key parameters of the Hedge algorithm is the learning rate which is typically a
function of the time horizon of interest T . It follows that the classical Hedge algorithm is not
suitable for settings where the time horizon of interest is unknown. The algorithms proposed in
Erven et al. (2011); De Rooij et al. (2014) addressed this limitation by adapting the learning rate
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without the need to know the value of T . In contrast, we assume T is given, but adapt the learning
rate in AdaHedge-G according to the observed losses so that it simultaneously achieves near-optimal
bound for expected regret and non-trivial sample-path regret guarantees.

3. Stochastically Partitioning Experts Setting

In this work, experts are represented by partitions of a hypercube B in a d-dimensional Euclidean
space. As discussed above, in each round t, the environment draws a point i.i.d. from B using
a fixed (unknown) distribution. For each such point, we draw d hyperplanes passing through the
point, parallel to the d faces of B. The set of experts available in round t is the set of partitions of B
created by all the hyperplanes drawn up to that round. The partitioning process for d = 1 and d = 2
is illustrated in Fig.1.

In round 1, the environment draws a point X1 ∈ B creating 2d experts, which we index
1, . . . , 2d. Similarly, in round t, the environment samples point Xt ∈ B resulting in (t + 1)d

experts. Among these experts, (t+1)d− td are new experts. We say an expert is a child of a parent
expert if the former is a sub-partition of the latter expert. We assign the index of each parent expert
to one of its children and assign new indices td + 1, . . . , (t + 1)d to the remaining unindexed new
experts. We use Bt = {1, . . . , nt}, where nt = (t + 1)d, to denote the set of indices at the end of
round t.

In round t, the environment first samples Xt, and the learner chooses a probability mass function
pppt over the set of experts Bt. Following this, the environment adversarially chooses a loss vector
lllt = (lt(1), . . . , lt(nt)) ∈ [0, 1]nt . The learner therefore incurs an expected loss of ⟨pppr, lllr⟩. The
cumulative loss of expert i ∈ Bt up to time t is Lt(i) =

∑t
r=1 lr(i), and the expected cumulative

loss of the learner up to time t is

Lt =

t∑
r=1

⟨pppr, lllr⟩.

For each new expert i ∈ Bt\Bt−1, its cumulative loss up to time t, i.e., Lt−1(i) is equal to the
cumulative loss of its parent expert from Bt−1. The subsequent losses of the new experts, however,
evolve independently from those of their parent experts.

We define
L∗
t = min

i∈Bt

Lt(i).

Given the time horizon T , we aim to minimize the expected regret

RT = E[LT − L∗
T ],

where the expectation is with respect to the joint distribution of the sequence of points XT =
{X1, . . . , XT } drawn by the environment in T rounds. Note that E[L∗

t ] will be equal to L∗
t if the

loss vectors generated are independent of the points sampled by the environment and the bound we
prove will still hold.

We also study the sample-path regret

R̂T = LT − L∗
T ,

and provide bounds in the high probability regime.
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Algorithm 1 Hedge-G for partitioning experts
1: Initialize: B0 = {1}, n0 = 0, w1 = 1, and W1 = 1.
2: for each round t = 1, 2, . . . , T do
3: Xt is drawn i.i.d. from B and new partitions are revealed
4: nt = (t+ 1)d and Bt = Bt−1 ∪ {nt−1 + 1, . . . , nt}
5: For i ∈ Bt\Bt−1, given Lt−1(i), compute new weights wt(i) = e−ηLt−1(i)

6: Ŵt = Wt +
∑

i∈Bt\Bt−1
wt(i)

7: Compute pi,t =
wi,t

Ŵt
, for all i ∈ Bt.

8: Choose an expert using pppt, observe lllt, and incur the loss ⟨pppt, lllt⟩.
9: Update the weights wt+1(i) = e−ηli(t)wt(i), for all i ∈ Bt.

10: Cumulative weight Wt+1 =
∑nt

i=1wt(i).
11: end for

Remark 1: One can alternatively interpret the partitioning experts setting as follows. Instead of
treating each partition as an expert, consider that each point in B is an expert. When the environment
draws an expert, it only reveals a single loss value per partition instead of losses for all the points in
B. For example, this loss value may be the average loss over all experts in the partition. Since we
can only work with the loss values per partition instead of losses of the individual experts (points),
the setting where we carry over cumulative losses of the parent partition to the new sub-partitions
is well-motivated, especially given its applicability in the classification application discussed in
Section 1.1.

4. The Hedge-G Algorithm: Regret Analysis

We propose an algorithm called Hedge-G, a natural extension of the Hedge algorithm for the grow-
ing experts setting, that introduces a new weight whenever a new expert arrives. For the branching
experts setting, these new weights can be readily computed as the cumulative losses of the new
experts are the same as their parent experts. In Algorithm 1, we present Hedge-G adapted to the
partitioning experts setting.

The regret analysis for Hedge-G differs from Hedge in that the introduction of new weights in
line 5 of Algorithm 1 implies that Wt does not normalize the weights wt(i), for i ∈ Bt. A key step
in our analysis of Hedge-G is to compute the expected value of the quantity Yt, the ratio between
the sum of new weights wt(i) and Wt, given by

Yt =

∑nt
i=nt−1+1wt(i)

Wt
=

∑nt
i=nt−1+1 e

−ηLt−1(i)∑
j∈Bt−1

e−ηLt−1(j)
. (1)

The following theorem characterizes an upper bound on the cumulative loss of Hedge-G.

Theorem 1 An upper bound for the cumulative loss of Hedge-G is given by

LT ≤ L∗
T +

Tη

8
+

∑T
t=1 Yt
η

. (2)

Proof We write

ln
Wt+1

Wt
= ln

Wt+1

Ŵt

+ ln
Ŵt

Wt
. (3)
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Given Ŵt =
∑

i∈Bt
e−ηLt−1(i), we upper bound the second term of (3) as follows.

ln
Ŵt

Wt
= ln

(∑
i∈Bt−1

e−ηLt−1(i) +
∑nt

i=nt−1+1 e
−ηLt−1(i)∑

i∈Bt−1
e−ηLt−1(i)

)
= ln (1 + Yt) ≤ Yt. (4)

Next, we upper and lower bound ln WT
W1

. By definition,

ln
WT

W1
= ln

(
T−1∏
t=1

Wt+1

Wt

)
=

T−1∑
t=1

[
ln

Wt+1

Ŵt

+ ln
Ŵt

Wt

]

≤
T∑
t=1

[
−η⟨pppt, lllt⟩+

η2

8
+ Yt

]

= −ηLT +
η2T

8
+

T∑
t=1

Yt. (5)

In the third step above, we have used (4) and Hoeffding’s lemma to upper bound ln Wt+1

Ŵt
. Also,

ln
WT

W1
= ln

nT∑
i=1

e−ηLT (i) ≥ lnmax
i∈BT

e−ηLT (i)

≥ max
i∈Bt

ln e−ηLT (i) = −ηL∗
T . (6)

From (5) and (6), we obtain the result.

To obtain a bound on the expected regret of Hedge-G from Theorem 1, we need to compute∑T
t=1 E[Yt]. A primer for computing E[Yt] is the following lemma which states that in any slot the

new point is equally likely to belong to any one of the existing partitions of B.

Lemma 2 Given that the sequence of points {Xt} are drawn i.i.d. from B, the point Xt drawn in
round t is equally likely to belong to any one of the existing td partitions, i.e.,

P(Xt ∈ partition i) =
1

td
, ∀i ∈ Bt−1.

Our next result uses Lemma 2 to compute E[Yt].

Lemma 3 E[Yt] =
(
1 +

1

t

)d

− 1 ≤ 2d

t
.

The proofs of Lemmas 2 and 3 are given in the Appendix.
Taking expectation on both sides in (2) (Theorem 1) and using Lemma 3, we obtain the follow-

ing bound on expected regret:

RT ≤
ηT

8
+

2d

η

T∑
t=1

1

t
≤ ηT

8
+

2d(lnT + 1)

η
. (7)

The regret bound in the following corollary immediately follows from (7).
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Corollary 4 For the partitioning experts setting, for Hedge-G with η =
√
2d+3(lnT + 1)/T , the

expected regret RT = O(
√
2dT lnT ).

Lower bound: Under our model, for any realization of XT , there will be (T + 1)d experts at
the end of round T . Since the environment generates losses adversarially, the sample path regret
R̂T for any algorithm is Ω(

√
dT lnT ) Freund and Schapire (1999). Since this lower bound is valid

for any realization, the expected regret of any algorithm is also Ω(
√
dT lnT ). Thus, from Corollary

4, we see that Hedge-G is order-optimal expected regret with respect to the time-horizon T . Note
that, the vanilla Hedge algorithm achieves O(

√
dT lnT ) expected regret only when all the (T +1)d

experts are known apriori and their losses are revealed in each round.

Corollary 5 For the partitioning experts setting, Hedge-G with η =

√
2d+3(lnT+1)

T 1−ϵ for any ϵ > 0,

the sample-path regret R̂T = O(
√
2dT 1+ϵ lnT ) with probability at least 1− T−ϵ.

Proof Using Markov inequality for the summation of the random variables Yt, we get

P

(
T∑
t=1

Yt ≥ T ϵ
T∑
t=1

E[Yt]

)
≤ 1−

∑T
t=1 E[Yt]

T ϵ
∑T

t=1 E[Yt]
= 1− T−ϵ.

Using this result in (2) and the upper bound for E[Yt] from Lemma 2, we obtain, with probability at
least 1− T−ϵ,

R̂T ≤
ηT

8
+

2dT ϵ(lnT + 1)

η
.

Choosing η =

√
2d+3(lnT+1)

T 1−ϵ results in R̂T ≤
√
2d−1T 1+ϵ(lnT + 1).

From Corollaries 4 and 5, it follows that for η =

√
2d+3(lnT+1)

T 1−ϵ , the sample-path regret of

Hedge-G, R̂T = O(
√
T 1+ϵ lnT ) with high probability and the expected regret of Hedge-G RT =

O(T
ϵ
2

√
T lnT ). Compared to this, the expected regret for Hedge-G with η =

√
2d+3(lnT + 1)/T

is O(
√
T lnT ), but this value of η leads to a sample-path regret bound that holds with probability

zero, as ϵ = 0. Therefore, to obtain a high probability bound on sample-path regret of Hedge-
G using Theorem 3 and Markov’s inequality, we use a value of η for which the expected regret is
higher than the optimal by a factor of O(T

ϵ
2 ). In Section 5, we address this trade-off by adapting

the learning rate based on the losses revealed by the adversary.
Remark 2: We now show that if Xt are drawn adversarially from B, Hedge-G has linear regret.

We construct the following problem instance for d = 1. Let the adversary always split the best
expert resulting in two best experts j and k. Assign lt(i) = 1, ∀i ̸= j, k. Uniformly at random, the
adversary assigns a loss of one to one expert in the set {j, k} and zero to the other expert. For this
problem instance, at any time t, L∗

t = 0, but the expected loss for Hedge-G in that time step will be
at least 1

2 . Hence, Hedge-G has expected regret of at least T
2 . This result is expected because if Xt

are adversarially drawn from B, then the partitioning expert setting is a special case of the branching
experts setting studied by Gofer et al. (2013). It is known for the branching experts setting, the regret
of any algorithm is Ω(

√
TNT ), where NT for the partitioning expert setting is equal to (T + 1)d.
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5. AdaHedge-G: Hedge-G with Adaptive Learning Rate

In this section, we propose a variant of Hedge-G called AdaHedge-G and show that its expected re-
gret is near-optimal while simultaneously achieving the same high probability bound for the sample-
path regret stated in Corollary 5.

The details of AdaHedge-G are presented in Algorithm 2. The key idea behind the algorithm is
to track the summation of Yts using the variable S and suitably change the learning rate over rounds
using a doubling trick. In particular, we partition the time into segments, where segment i spans the
number of rounds for which S ≤ 2id. At the start of any segment i, we reset the value of S to zero,
choose an equal weight for all the existing experts (from the previous segment), and use Hedge-G
with learning rate η =

√
8(2id + ln τi)/T , where τi is the round in which the segment starts.

Algorithm 2 AdaHedge-G

1: Initialize: r ← 0, S ← 0, τ ← 1, c← 2d,w1 = 1, and η ←
√

8c
T .

2: for t = 1, . . . , T do
3: Xt is drawn i.i.d. from B
4: Calculate Yt using (1)
5: if S + Yt > c then
6: Start a new segment
7: wt = (w1, . . . , wtd) =

(
1
td
, . . . , 1

td

)
8: S ← 0
9: c← 2dc

10: η ←
√

8(c+d ln t)
T

11: end if
12: S ← S + Yt
13: Use Hedge-G with already observed Xt, initial weight vector wt and learning rate η.
14: end for

The next theorem characterizes an upper bound on the cumulative loss of AdaHedge-G.

Theorem 6 An upper bound for the cumulative loss of AdaHedge-G is given by

LT ≤ L∗
T +

2d−
1
2

2
d
2 − 1

√√√√T

(
T∑
t=1

Yt + 1

)
+

1 +
2

d
log2


√√√√ T∑

t=1

Yt + 1

√dT lnT/2. (8)

Proof Let ri be the length of the ith segment, i.e., the number of rounds in the ith segment. By
definition of a segment, we have

ri = min

{
r :

r∑
i=τi

Yi > 2id

}
− τi,

where τi is the round in which the segment i starts and is given by τi =
∑i−1

u=1 ru + 1. Let R(i)

denote the regret incurred in segment i. It follows that

R(i) =

τi+1−1∑
u=τi

lu − min
j∈Bτi+1−1

τi+1−1∑
u=τi

lu(j).

9
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We repeat the regret analysis from the proof of Theorem 1 for R(i) and obtain

R(i) ≤ ηiri
8

+
Si + d ln τi

ηi
≤
√

T (2id + d lnT )/2,

where, we have used ri ≤ T , τi ≤ T ,

Si =

τi+1−1∑
r=τi

Yr ≤ 2id, and ηi =

√
2id+3 + 8d ln τi

T
.

Note the weights are reinitialized to 1/τdi at the start of the segment and this yields the additional

term of d ln τi when upper bounding ln
Wτi+1−1

Wτi
in the analysis leading to (6).

Let m denote the last segment that started before round T . We add regret across all the m
segments and obtain,

LT − L∗
T ≤

m∑
i=1

R(i) ≤
√

T

2

(√
2d + d lnT +

√
22d + d lnT + . . .+

√
2md + d lnT

)
≤
√

T

2

m∑
i=1

2
id
2 +m

√
dT lnT/2

≤

√
T
2 2

(m+1)d
2

2
d
2 − 1

+m
√
dT lnT/2. (9)

Further, we have
T∑
i=1

Yt ≥
m−1∑
i=1

2id ≥ 2d
2(m−1)d − 1

2d − 1
.

Therefore,

2
md
2 ≤ 2

d
2

√√√√ T∑
t=1

Yt + 1 (10)

=⇒ m ≤ 2

d
log2

2
d
2

√√√√ T∑
t=1

Yt + 1

 = 1 +
2

d
log2


√√√√ T∑

t=1

Yt + 1

 . (11)

Substituting (10) and (11) in (9), we obtain the result

The next theorem provides guarantees on the regret of AdaHedge-G.

Theorem 7 For the partitioning experts setting AdaHedge-G has the following regret bounds.

(i) The expected regret RT = O(ln(lnT )
√
T lnT ).

(ii) For ϵ > 0, and d ≥ 1, the sample-path regret R̂T = O(T
ϵ
2

√
T lnT ), with probability at least

1− T−ϵ.

10
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(iii) For d = 1, the sample-path regret R̂T = O(ln(lnT )
√
T lnT ), with probability at least

1− (eT )−0.25.

Proof

(i) From Lemma 3 and applying Jensen’s inequality to (8) and substituting E
[∑T

t=1 Yt

]
≤

lnT + 1, we get the final result.

(ii) Using Markov inequality for the summation of the random variables Yt, we get

P

(
T∑
t=1

Yt ≥ T ϵ
T∑
t=1

E[Yt]

)
≤ 1−

∑T
t=1 E[Yt]

T ϵ
∑T

t=1 E[Yt]
= 1− T−ϵ.

Using this result in (8) and the upper bound for E[Yt] from Lemma 2, we obtain, with proba-
bility at least 1− T−ϵ,

R̂T = O(
√
T 1+ϵ lnT + (1 + ϵ) lnT

√
T lnT ) = O(

√
T 1+ϵ lnT ).

(iii) For d = 1, we have

Yt =
e−Lt−1(nt)∑

j∈Bt−1
e−Lt−1(j)

. (12)

Note that eLt−1(i)−Lt−1(j) ≥ 0 for all i, j, and Lt−1(i) ≥ Lt−1(j) implies eLt−1(i)−Lt−1(j) ≥
1. Therefore,

Yt =
1∑

j:Lt−1(j)>Lt−1(nt)
eLt−1(nt)−Lt−1(j) +

∑
j:Lt−1(j)≤Lt−1(nt)

eLt−1(nt)−Lt−1(j)

≤ 1∑
j∈Bt−1

1{Lt−1(j)≤Lt−1(nt)}
. (13)

In round t, we define a random variable Zt such that Zt = j−1, if Xt falls in the jth best expert,
i.e., if

∑
j∈Bt−1

1{Lt(j)≤Lt(nt)} = j. From (13), we have Yt ≤ Zt, for all t. From Lemma 2,
the probability that Xt falls in jth is 1

t , which implies P(Zt = j−1) = 1/t. Therefore,

E[Zt] =
t∑

j=1

1

t

1

j
≤ ln t+ 1

t
, (14)

=⇒
T∑
t=1

E[Zt] ≤ (lnT + 1)2. (15)

Further, we have

P

(
T∑
t=1

Yt −
T∑
t=1

E[Yt] > δ

)
≤ P

(
T∑
t=1

Zt −
T∑
t=1

E[Yt] > δ

)

11
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≤ P

(
T∑
t=1

Zt −
T∑
t=1

E[Zt] > δ −
T∑
t=1

E[Zt] +
T∑
t=1

E [Yt]

)

≤ P

(
T∑
t=1

Zt −
T∑
t=1

E[Zt] > δ − (lnT + 1)2 + lnT

)
. (16)

To get (16), we use (14), (15), and the fact that
∑T

t=1 E [Yt] ≥ lnT . Since the Zts are
independent and are upper bounded by one, using Bernstein’s inequality, we get

P

(
T∑
t=1

Zt −
T∑
t=1

E[Zt] > δ′

)
≤ e

− δ′2/2
Vn+δ′/3 , (17)

where Vn =
T∑
t=1

Var(Zt), and δ′ = δ − (lnT + 1)2 + lnT . We have

Var(Zt) =
t∑

j=1

1

t

1

j2
− E[Zt]

2 ≤ π2

6t
=⇒

T∑
t=1

Var(Zt) ≤
π2

6
(lnT + 1). (18)

Choosing δ = (lnT + 1)2 + 1 results in δ′ = lnT + 1. Substituting δ′ and (18) in (17),

P

(
T∑
i=1

Yi −
T∑
i=1

E[Yi] > δ

)
≤ e

− (lnT+1)2/2

π2
6 (lnT+1)+(lnT+1)/3 ≤ e

−3 ln(eT )

π2+2 ≤ (eT )−0.25. (19)

Substituting the above result in (8) proves the final result.

From parts (i) and (ii) of Theorem 7, we observe that AdaHedge-G has near-optimal expected
regret (sub-optimality of a factor of ln(lnT )) and it also has the same high probability bound on
sample-path regret as that of Hedge-G in Corollary 5. AdaHedge-G thus addresses the limitation of
Hedge-G discussed at the end of Section 4. Further, in part (iii) of the theorem, for the special case
d = 1, we provide a sample-path regret that is near-optimal with high probability, independent of ϵ.
Proving a tighter bound for d > 1, similar to the case d = 1, remains an open problem.

6. Concluding Remarks

In this work, we propose an adaptation of Hedge for the partitioning experts setting where the
number of experts increases polynomially with time. We show that our algorithm and its adaptive
rate variant have (near-)optimal expected regret bounds and non-trivial sample path-regret bounds
under the high probability regime.

Possible extensions of this work include: (i) designing anytime policies when T is unknown,
(ii) considering the setting where the rate of growth of the experts is random, i.e., the environment
samples a random number of points in each round, and (iii) studying the setting where the new
experts are approximate clones of the parent experts instead of being perfect clones. Further, the
setting of stochastically partitioning experts with stochastic losses can also be explored.

12
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Appendix A. Proof of Lemma 2

We first prove the result for one dimension and then extend the result for the d dimension by estab-
lishing the independence of the coordinates of the points in each dimension.

For d = 1, the points belong to a closed interval on the real line. We have a strict inequality since
Xt is drawn from a continuous i.i.d. distribution. Hence for any two permutations Xj1 , Xj2 , . . . , Xjt

and Xk1 , Xk2 , . . . , Xkt of the sequence Xt, we have

P(Xj1 < Xj2 < . . . < Xjt) = P(Xk1 < Xk2 < · · · < Xkt).

Since the events {Xj1 < Xj2 < · · · < Xjt} are mutually exclusive and there are t! possible
permutations, we have ∑

{j1,j2,...,jn}

P (Xj1 < Xj2 < · · · < Xjt) = 1 (20)

=⇒ P (Xj1 < Xj2 < · · · < Xjt) =
1

t!
. (21)

Given any realization of the sequence Xt−1, for some permutation of j1, j2, . . . jt−1 we have Xj1 <
Xj2 < · · · < Xjt−1 . Let expert i be the kth interval (Xjk−1

, Xjk), then the event {Xt ∈ expert i} is
equivalent to {Xt ∈ (Xjk−1

, Xjk)}, i.e., Xt is the kth highest value in the realization {Xt−1, Xt}.
Therefore, we have

P
(
Xt ∈ expert i

∣∣Xj1 < Xj2 < · · · < Xjt−1

)
(22)

=P
(
Xt ∈ (Xjk−1

, Xjk)
∣∣Xj1 < Xj2 < · · · < Xjt−1

)
=
P
(
Xj1 < · · · < Xjk−1

< Xt < Xjk < · · · < Xjt−1

)
P
(
Xj1 < Xj2 < · · · < Xjt−1

)
=

1

t!
1

(t− 1)!

=
1

t
.

Note that the conditional probability is independent of k and thus it is true for any expert i. Finally,
using total probability law over the permutations j1, j2, . . . , jt−1, we obtain P(Xt ∈ expert i) =
1/t, for all i.

For d > 1, let Xt = (Z1
t , . . . , Z

d
t ), where Zr

t is the Euclidean coordinate of point Xt in rth

dimension.
Claim: Zr

t are i.i.d. across t and r.
From the above claim and from (20), for any permutation j1, j2, . . . , jt−1 in dimension k, we

obtain

P
(
Zr
j1 < Zr

j2 < · · · < Zr
jt

)
=

1

t!

=⇒ P
(
{Z1

m1
< Z1

m2
< · · · < Z1

mt
}, . . . , {Zd

j1 < Zd
j2 < · · · < Zd

jt}
)
=

1

(t!)d
.
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Again, given any realization of Xt−1, the event {Xt ∈ expert i} is equivalent to {Zr
t ∈ (Zr

jk−1
, zrjk)}

for some permutation jr1 , j
r
2 , . . . , j

r
t−1 in each dimension r.

P
(
Xt ∈ expert i

∣∣ {Z1
m1

< Z1
m2

< · · · < Z1
mt−1
}, . . . , {Zd

j1 < Zd
j2 < · · · < Zd

jt−1
}
)

(23)

=
P
(
{Z1

m1
< · · · < Z1

mk−1
< Z1

t < Z1
mk

< · · · < Z1
jt−1
}, . . . {Zd

j1
< · · · < Zd

jk−1
< Zd

t < Zd
jk

< · · · < Zd
jt−1
}
)

P
(
{Z1

m1
< Z1

m2
< · · · < Z1

mt
}, . . . , {Zd

j1
< Zd

j2
< · · · < Zd

jt
}
)

=

1

(t!)d

1

[(t− 1)!]d

=
1

td
.

Appendix B. Proof of Lemma 3

In round t − 1, let Ht denote the set comprising the history of the losses of the experts and the
sequence of arrivals Xt−1. Given a realization of Ht, Yt takes td possible values each corresponding
to Xt belonging to one of the td partitions. From Lemma 2, the latter event has probability 1/td.
For i, j ∈ Bt−1, let cj(i) denote the number of partitions of expert i caused by sampling Xt from
expert j, and let Ci =

∑
j∈Bt−1

cj(i). The conditional expectation of Yt given Ht is given by

E[Yt | Ht] =
∑

j∈Bt−1

1

td

∑
i∈Bt−1

cj(i)e
−ηLt−1(i)∑

j∈Bt−1
e−ηLt−1(j)

=
1

td

∑
i∈Bt−1

Cie
−ηLt−1(i)∑

j∈Bt−1
e−ηLt−1(j)

. (24)

Note that Ci is the total number of partitions of expert i created due to sampling Xt from all
td experts. We compute Ci using the following counting argument. We say an expert i shares
k hyperplanes with expert j if, for any point in i, exactly k out of the d orthogonal hyperplanes
(parallel to the faces of B) that pass through that point will partition expert i. We compute the
number of experts that share exactly k hyperplanes with i as follows. Choose any k dimensions
from d in

(
d
k

)
possible ways. Further, choose any orthogonal hyperplane passing through i that is

parallel to some dimension from the rest of d−k dimensions. There will be t−1 basis hyperplanes,
i.e., the hyperplanes that partitioned B by passing through t − 1 points drawn by the environment,
that are parallel to the chosen hyperplane and do not partition i. The (t − 1)d−k partitions, which
are formed by the intersection of the t − 1 basis hyperplanes corresponding to each of the d − k
dimensions, do not share exactly d− k hyperplanes with i, or they share exactly k hyperplanes with
i. Therefore, the total number of experts that share exactly k hyperplanes with i is

(
d
k

)
(t − 1)d−k,

and each point drawn from those experts will result in 2k partitions of expert i. Since index i will
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be assigned to one of its children (sub-partitions), we have 2k − 1 new experts from partitioning i.

Ci =

d∑
k=1

(
d

k

)
(2k − 1)(t− 1)d−k

= (t− 1)d
∑(

d

k

)(
2

t− 1

)k

−
d∑

k=1

(
d

k

)
(t− 1)d−k

= (t− 1)d
(
t+ 1

t− 1

)d

− td = (t+ 1)d − td.

Indeed Ci is independent of i and is equal to the total number of new experts revealed in slot t.
Substituting Ci = (t+ 1)d − td in (24), we obtain

E[Yt | Ht] =

(
1 +

1

t

)d

− 1.

The result follows from the fact that the conditional expectation is independent of the realization of
Ht, and the upper bound is due to the following inequality.

(1 + x)r ≤ 1 + (2r − 1)x; x ∈ [0, 1] and r ∈ R \ (0, 1).
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