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What is Computer vision?
Optical Flow Estimation
Brightness Constraint
Aperture Problem

KLT Algorithm

Condition for solvability
Eigenvalue interpretation

Applications
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Interesting Examples
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What is Computer-Vision

» Computer vision is the field of computer science and Artificial Intelligence
that deals with replicating complex functionalities of our human eye and help
computers perceive and process the images/videos in the same way.

(a) Image segmentation(Source) (b) Activity Recognition(Source)
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https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://medium.datadriveninvestor.com/a-guide-to-human-activity-recognition-f11e4637dc4e

Optical Flow Example
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Estimating Optical Flow
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Figure 3: Transition from I(x,y,t) to I(x,y,t+1)

Three important assumption for estimating optical flow-

» Brightness Constancy
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Three important assumption for estimating optical flow-
» Brightness Constancy
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Estimating Optical Flow
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Figure 3: Transition from I(x,y,t) to I(x,y,t+1)

Three important assumption for estimating optical flow-
» Brightness Constancy
» Small motion

» Spatial coherence
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Brightness Constancy Constraint

© Brightness Constraint
I(x,y, t =1) = I(x + u(x,y),y + v(x,y),t)
Linearizing using Taylor's series expansion
I(x+uy+v,t)=I(x,y,t = 1)+ hu(x,y) + Lv(x,y) + Ik

I(X—I—U,y—l— V’ t) - I(vavt_ 1) ~ IXU(XaY)+ /yV(va)+It
Vifuv]” + 1, ~0
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Aperture Problem

@ gradient constraint provides 1 constraint in 2 unknowns u,v

@ gradient constrains the velocity in normal direction

Q u,= ‘vff” I g Af Vf = 0 then normal velocity is undefined hence we get

no constraint.

Figure 4: Horizontal Edge detects vertical motion
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Aperture Problem

@ gradient constraint provides 1 constraint in 2 unknowns u,v

@ gradient constrains the velocity in normal direction
f,
9 u, = — =t
VAL
no constraint.

Figure 5: Vertical Edge detects horizontal motion
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Aperture Problem

@ gradient constraint provides 1 constraint in 2 unknowns u,v

@ gradient constrains the velocity in normal direction

Q u,=- £ ‘

NG
no constraint.
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JIf VF = 0 then normal velocity is undefined hence we get
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Figure 6: Corners detect both
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Lucas Kanade Object Tracking Algorithm

le(pi) + VI(pi).lu v] =0

I(p1)  1,(p1) l+(p1)

I(p2)  1,(p2) m l+(p2)

L(p25) 1,(p25) 1i(p25)
Ad=b

Least squares solution for d is given by (AT A)d = AT b

SR MR

AT A ATh
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Conditions for solvability

The following above equation is solvable uder the given conditions-

> AT A should be invertible
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Conditions for solvability

The following above equation is solvable uder the given conditions-
» AT A should be invertible

» Eigen values A1 and A3 should not be too small in magnitude
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Conditions for solvability

The following above equation is solvable uder the given conditions-
» AT A should be invertible
» Eigen values A1 and A3 should not be too small in magnitude

» AT A should be well conditioned i.e Eigen value i—; should not be too large
and A; being the larger of them.

The Matrix M = AT A is the Corner detection matrix !!
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Corner detection & Eigenvalue Interpretation

Figure 1: Eigen value interpretation-Shi Tomasi

(a) M2 — k(A1 + X2)? (b) min(A1, X2)
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Temporal Aliasing Coarse to fine Gaussian Pyramids
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Applications-Precipitation Nowcasting

= £ e

Read last 24 images Detect corner features Track the features

Multiply by affine transform matrix M to get Nowcasting

Figure 8: Steps to deduce rainfall in near future using Optical flow
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Errors in Lucas Kanade Algorithm
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(Source)
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https://commons.wikimedia.org/wiki/File:Barber-pole-02.gif

Errors in Lucas Kanade Algorithm

(Source)
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https://commons.wikimedia.org/wiki/File:Sphere_rotating_transparency.gif

Optical Flow without Motion !!



https://dribbble.com/tags/striped_background

Thank You
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