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Abstract—Computer vision is the field of computer science
and Artificial Intelligence that deals with replicating complex
functionalities of our human eye and helps computers perceive
and process images/videos in the same way. Computer vision
deals with various image processing tasks such as object detec-
tion, classification, segmentation, recognition. In this paper, we
will be talking about Optical flow estimation. Motion perception
has been an integral aspect of our visual experience. Therefore
our goal is to estimate the 2D motion fields i.e 2D velocities
of all visible points in the image frame. Two key problems are
identifying which objects to detect and how to track them. I
will be discussing the harris corner detection method to identify
some corners/particles and use Lucas Kanade Algorithm to track
them.

I. MOTIVATION

Motion is a rich source of information in conveying im-
portant aspects of any process. Optical flow is used robustly
by engineers for visual odometry, movement detection, image
dominant plane extraction. It not only helps in identifying the
motion of an object and observer but also makes us aware of
the structure of components in the environment. Consider a
ball is moving to the right in a sequence of five frames. This
movement is captured essentially by optical flow estimation
in just one frame thus compressing the information. The
contemporary area of research is biological neural circuitry
and neuromorphic engineering which extensively uses optical
flow sensors.

II. INTRODUCTION

Video is a combination of many frames/images and the
image is a function of coordinate space(x,y) and time(t).
Optical flow is defined as the apparent motion of brightness
patterns in the image. Three important assumptions while
calculating optical flow are
Brightness Constancy-The neighbouring points in the
image are often of similar brightness assuming the surface
illumination is constant.
Small motion-limited movement of particles between frames.
Spatial coherence-Neighbouring Points have similar velocities.

I(x, y, t− 1) = I(x+ u(x, y), y + v(x, y), t) (Assumption)

I(x+u, y+ v, t) ≈ I(x, y, t− 1)+ Ixu(x, y)+ Iyv(x, y)+ It

I(x+u, y+ v, t)− I(x, y, t− 1) ≈ Ixu(x, y)+ Iyv(x, y)+ It

∇I[u v]T + It ≈ 0

A. Aperture Problem

The above gradient constraint provides 1 constraint in 2
unknowns u,v. The gradient constrains the velocity in the nor-
mal direction and has no control in the tangential direction.The
unique Normal velocity is given as un = − ft

∥∇⃗f∥
∇⃗f

∥∇⃗f∥ .

If ∇⃗f = 0 the normal velocity is undefined hence we get no
constraint.In any case, we need more constraints to find the
velocity vector u⃗ = (u, v)T .This is referred to as the Aperture
problem in optical flow estimation.

Fig. 1. Normal Velocity

III. LUCAS KANADE METHOD(KLT)

To solve the problem of 2 unknowns and 1 constraint we
provide another constraint of spatial coherence. We assume 5
5-pixel area to have the same (u,v) which gives 25 equations
i.e over-constrained. There might be no velocity (u1,u2) that
might satisfy all these equations hence we use the Least square
estimator to minimize squared errors(LS).
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The following above equation is solvable uder the given
conditions-



1) ATA should be invertible
2) Eigen values λ1 and λ2 should not be too small in

magnitude
3) The matrix ATA should be well conditioned i.e Eigen

value λ1

λ2
should not be too large and λ1 being the larger

of them.
The matrix M = ATA is the second-moment matrix Har-
ris corner detector. The Eigen-vectors and Eigenvalues of
ATA relate to edge direction and magnitude. The eigenvector
associated with larger eigenvalue , points in the direction
of the fastest intensity change and the other eigenvector is
perpendicular to it.Hence Optical flow heavily depends on
corner feature extraction for it’s accuracy.Interpretation of
eigenvalues is explained below

1) λ2 >> λ1 or λ1 >> λ2 =⇒ edge.
2) λ2 ≈ λ1 and are large =⇒ corner.
3) λ1 and λ2 are small =⇒ a flat region

IV. ITERATIVE OPTICAL FLOW ESTIMATION

From the above 25 equations it is clear that KLT involves
over-constrained set of equations which can be only be
solved by iterative estimation.The Lucas Kanade method
approximates the brightness constraint equation as a linear
equation neglecting higher order terms.The estimation error
is bounded by the following expression

|d̂− d| ≤ d2f ′′
1 (x)

2|f ′
1(x)|

+O(d3)

For sufficiently small displacements and finite f ′′
1

f1
we get

high accuracy.Thus we can use Gauss-Newton optimaization
which useS current estimated motion to undo and then warp
the signals to find new residual motion until convergence
of residual motion is reached. Consider a warped 2D image
transformation as follows -

I0(x⃗, t+ δt) = I(x⃗+ u⃗0δt, t+ δt)

where δt is time between consecutive frames.We have u⃗ =
u⃗0 + δu⃗ which yields the following -

I0(x⃗+δu⃗, t+1) = I(x⃗+δu⃗+u⃗0, t+1) = I(x⃗+u⃗, t+1) = I0(x⃗, t)

If δu⃗ = 0 then we get I0 as constant in time else we can
compute the residual motion using -

δu⃗ = M−1⃗b

u⃗ = u⃗0 + δu⃗

This residual motion is used to rewarp the image and then
calculate new residual motion.This sequence of iterations con-
verges to the desired objective function and the flow estimates
converge to the LS estimate.

V. TEMPORAL ALIASING AND COARSE TO FINE GAUSSIAN
PYRAMIDS

We obtain data by sampling the continuous signals at
certain rates decided by various sampling theorems. If the
displacement between two consecutive frames is large (caused
by the high flutter speed of the camera) temporal aliasing is
caused which leads to the convergence to wrong optical flow.
Sampling the image at an interval of 2π

T where T is the time
duration between two frames, causes spectrum replicas. The
derivative filters are more sensitive to spectrum replicas at high
frequencies. To avoid this we use coarse to fine estimation
using Gaussian pyramids.

1) Start at the base level k=L lowest resolution, warp the
images and obtain LS estimated residual motion until
convergence u⃗L.

2) warp level k=L-1 by using u⃗L and obtain the new motion
u⃗L−1 until convergence.

3) ....until level k=0.
Drawback of this method is that a poor estimate at lower level
leads to wrong estimate at finer levels.Aliasing may cause
optimization algorithms to converge to a local minima which
can be prevented by using coarse to fine approximation.

Fig. 2. Gaussian Pyramids

VI. GLOBAL SMOOTHING USING HORN SCHUNCK
METHOD

Unlike Lucas Kanade’s method which assumes constant
optical flow, Horn Schunck provides a smooth optical flow.
All the objects in the world are rigid and they move coherently
in a smooth fashion. Apart from the brightness constancy
condition, we have another smooth flow condition. Thus the
optical flow objective function is

E(u⃗) =

∫
(∇I.u⃗+ It)

2 + λ2(
∥∥∥∇⃗u1

∥∥∥2 + ∥∥∥∇⃗u2

∥∥∥2)
The smoothness regularization coefficient is the sum of
squared terms hence needs to be minimized. Therefore the
texture free region is devoid of optical flow whereas on the



edge the points will flow to the nearby region which is given
by the aperture problem. The key benefit of global smoothing
is that it helps in propagating the optical motion field to
larger distances. For example, if there is a patch of uniform
intensity , local optical flow methods would yield singularity
whereas global methods are used to fill in the optical flow
from neighbouring cells with the help of gradient constraints.
The only disadvantage of global smoothing is the computa-
tional cost which is very high compared to local methods
even after using good optimizing techniques. One can use
precomputed gradients to speed up the process.

VII. APPLICATION OF LUCAS KANADE ALGORITHM TO
PRECIPITATION NOWCASTING

The question of How much will it rain in the next hour
in this area essentially refers to precipitation nowcasting. It is
defined as a forecast with high spatial-temporal resolution. It
helps us in predicting high convective rainfall, flash floods
leading to sediment deposition and soil erosion. For every
algorithm to work we need a feature to work with.

1) Identify precipitation features using shi Tomasi corner
detection algorithm which uses the eigenvalues λ1, λ2 of
the covariance matrix of Intensity derivatives and based
on R score=min(λ1, λ2) detects them.

2) Track the features at time t above by solving the set
of optical flow estimation equations in the local neigh-
bourhood as shown above in the Lucas Kanade object
tracking method.

3) extrapolates the features to predict their position at lead
time n.

4) Extrapolate the features at time t by warping them to
their future locations using the affine transformation
matrix. The remaining discontinuities are then linearly
interpolated to estimate their nowcast intensities.

Fig. 3. Precipitation Nowcasting technique

VIII. CORNER DETECTION ALGORITHM

Corner are points in image where slight shift in location
will result in a large change in intensity in both the axes.Let I
be the image intensity and f be the sum of squared differences
between two patches.Let the window under consideration be
W.

f(∆x,∆y) =
∑

(I(xk, yk)− I(xk +∆x, yk +∆y))2

Using the Taylor expansion and linearity we get

I(x+∆x, y +∆y) ≈ I(x, y) + Ix(x, y)∆x+ Iy(x, y)∆y

f(∆x,∆y) ≈
∑

(Ix(x, y)∆x+ Iy(x, y)∆y)2

f(∆x,∆y) ≈ (∆x,∆y)M(∆x,∆y)T

where M =
∑[

I2x IxIy
IxIy I2y

]
By solving for the eigenvectors and values of M we can
calculate the R-score. If the λ1 >> λ2 we get an edge as
there is an increase in SSD(sum of squared differences) along
one direction. If eigenvalues are large it’s a corner as there is
a sharp increase in SSD in almost all the directions and a flat
region if eigenvalues are small.
R score(Harris corner detector)=λ1λ2 − k(λ1 + λ2)

2

R score(Shi Tomasi corner detector)=min(λ1, λ2)
In practice it is seen that shi Tomasi performs better than harris
corner detector.

IX. ERRORS IN LUCAS KANADE & FUTURE RESEARCH

There are some cases where the algorithm will fail badly
i.e when our assumptions of Brightness constancy are not
satisfied, the motion that we are trying to detect is not small
and Neighbouring points don’t move in the same way(window
size is too large).Some practical cases include a rotating
sphere, a barber pole that has alternate coloured stripes and
changing light intensities that can make things seem to move
due to changing brightness. Still, Lucas Kanade has tremen-
dous application in practical uses like improving video quality,
image segmentation, tracking objects, recognizing events and
activities.
Traditional optical flow algorithms are iterative algorithms,
have convergence issues and are difficult to optimize further
in terms of accuracy. Currently Deep Learning techniques like
FlowNet(3D CNN) and supervised and unsupervised learning
algorithms. Recently FlowNet2 was introduced which had
50% less estimation error compared to FlowNet which stacks
several neural nets and uses warping techniques to predict
displacement.It was a very fascinating topic to study which
uses simple Taylor series expansion to yield such a beautiful
algorithm and has applications in so many fields. [1]–[6]
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