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ABSTRACT
A proposed alternative to the classical notion of fairness for cake
cutting, has been to introduce an underlying network structure over
the agents, and study local fairness in this graphical setting. In this
setting, efficient algorithms, both discrete and continuous moving-
knife, have been studied for outputting envy-free allocations on
several network structures with special properties, most of them
being some variant on trees. We study moving-knife algorithms
as they are simpler and tend to require a much fewer number
of cuts than their discrete counterparts. In this report, first, we
modify an existing algorithm for an envy-free allocation on trees,
to incorporate an additional edge at level 1 in the network while
preserving fairness. Next, we propose moving-knife algorithms
for obtaining envy-free allocations on i) cycle networks (upto 𝐶6),
and ii) cliques connected via a bridge. We conclude by showing a
few more miscellaneous structures, for which we have envy-free
algorithms that we will omit, and briefly discuss possible extensions
to our results.
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1 INTRODUCTION AND RELATEDWORK
The classical problem of cake-cutting, is an age-old question in the
fair allocation setting. The "cake" represents a divisible good to be
allotted to𝑛 agents. It is, to this day, still a subject of intense research
and has many useful variants. The variant we will be concerned
with, however, involves imposing a network structure over our
set of agents and then studying the problem of fair cake-cutting
in this setting. The classical cake-cutting problem was intensively
studied in the 20th century, starting with proportional allocations.
However, the question of whether or not there exists an envy-
free allocation was answered only in the 1990s, and a discrete and
bounded algorithm for 4 agents ([3]) and 𝑛 agents ([2]) was only
discovered in 2016. Currently, it is known that the lower bound on
run-time complexity for discrete algorithms is Ω(𝑛2) and the upper
bound is 𝑂 (𝑛𝑛𝑛

𝑛𝑛

), leaving a very large range of possibilities for
its exact complexity.
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As a result, there was a need to look at things from a different
perspective. In most practical scenarios, global fairness is unneeded.
When allocating a divisible resource over a large group of people,
a single agent typically only compares his share with a subset of
people, such as his friends or co-workers. We can represent such
models by a network structure imposed over the agents; that is, an
undirected graph with agents representing nodes and their neigh-
bours being connected by edges. Envy-freeness ([4], [8], [9]) and
proportionality ([5]) have been studied on networks with special
properties - the idea being that for certain graphs, this less restric-
tive version of fairness leads to more efficient algorithms. To the
best of our knowledge, however, most work in this region of in-
terest has been done on tree networks/networks related to trees,
and no one has extensively studied the structures for which we are
proposing algorithms.

Another aspect is the usage of moving-knife algorithms over
discrete algorithms - the algorithms we propose are all moving-
knife ones. These cannot be implemented in a finite number of
discrete steps, and thus can have theoretically infinite run-time, but
they also provide much simpler algorithms with a fewer number
of cuts/better time complexity w.r.t. number of cuts. Both moving-
knife and discrete algorithms are thoroughly studied in this setting,
and it is our belief that new discoveries pertaining to moving-knife
algorithms are important, both in understanding and accelerating
progress in this field.

2 OUR CONTRIBUTIONS
(1) We modify an existing 𝑂 (𝑛2) algorithm on binary tree net-

works ([4]) so that it outputs an envy-free allocation on a
tree with an edge added at level 1, without changing its
complexity.

(2) We propose moving-knife algorithms with an efficient num-
ber of cuts that output envy-free allocations on cycle net-
works (upto 𝐶6).

(3) We tackle clique networks connected by bridges, and make
headway by proposing an algorithm that outputs an envy-
free allocation on 3-cliques connected via a bridge.

We have obtained algorithms for several other miscellaneous struc-
tures as well, but these 3 results are our main focus, as they present
the possibility of leading to generalized solutions for some network
types.

3 MODEL
3.1 Problem Formulation
In our setting we have a cake depicted as an interval C = [0, 1]
and 𝑛 agents. Each agent possesses a valuation density function,
𝑢𝑖 : [0, 1] → R which is continuous. A piece of C ‘𝑆’ is defined to
be a union of finitely many disjoint intervals, i.e 𝑆 = ∪𝑗𝑠 𝑗 where



𝑠 𝑗 ⊆ [0, 1] is an interval and ∀𝑖, 𝑗, 𝑖 ≠ 𝑗, we have 𝑠 𝑗 ∩ 𝑠𝑖 = 𝜙 . The
valuation of agent 𝑖 for a piece S is defined to be 𝑣𝑖 (𝑆) =

∫
𝑆
𝑢𝑖 (𝑥)𝑑𝑥 .

Our assumptions for each 𝑣𝑖 :
Additive -∀𝑥,𝑦 ⊆ [0, 1], 𝑣𝑖 (𝑥 ∪ 𝑦) + 𝑣𝑖 (𝑥 ∩ 𝑦) = 𝑣𝑖 (𝑥) + 𝑣𝑖 (𝑦),
Divisible-∀𝑥 ⊆ [0, 1], 𝜆 ∈ [0, 1], ∃𝑦 ⊆ 𝑥 𝑠.𝑡 . 𝑣𝑖 (𝑦) = 𝜆𝑣𝑖 (𝑥).
Furthermore, we assume each 𝑣𝑖 is normalized, i.e. 𝑣𝑖 ( [0, 1]) = 1.
Our goal is to divide the cake into𝑛 disjoint pieces𝐴 = (𝐴1, 𝐴2, ....𝐴𝑛)
such that agent 𝑖 gets the piece 𝐴𝑖 and ∪𝑖𝐴𝑖 = [0, 1].

Definition 3.1. (Envy Freeness) For a cake-division instance, an
allocation A is said to be envy-free if we have for all agents 𝑖, 𝑗 ∈ [𝑛],
𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴 𝑗 ) .

Definition 3.2. (Envy Freeness on Networks) Assuming a simple
graph 𝐺 = (𝑉 , 𝐸) where each vertex denotes agent 𝑖 and 𝑁 (𝑖)
denotes the set of neighbours of agent 𝑖 . An allocation A is called
envy-free on a network𝐺 = (𝑉 , 𝐸) if for∀𝑖 𝑎𝑛𝑑 ∀𝑗 ∈ 𝑁 (𝑖), 𝑣𝑖 (𝐴𝑖 ) ≥
𝑣𝑖 (𝐴 𝑗 ). An important observation to make is that an allocation that
is envy-free over a graph 𝐺 , is also envy-free over any subgraph
𝐺 ′ ⊆ 𝐺 .

Special Graph Structures: We will be looking at envy freeness
over cycle graphs 𝐶𝑛 particularly 𝐶4,𝐶5,𝐶6. Apart from this we
will also focus on cliques of size 3 connected by a bridge and some
structures involving trees.

3.2 Subroutines
3.2.1 Austin Cut. The Austin moving-knife procedures [1] are
procedures for equitable division of a cake. Define the subroutine
for 2 players andm equal division as𝐴𝑢𝑠𝑡𝑖𝑛𝐶𝑢𝑡 (𝑖, 𝑗,𝑚, 𝑆)-partitions
𝑆 into𝑚 parts, s.t. for every piece 𝑃, 𝑣𝑖 (𝑃) = 𝑣𝑖 (𝑆 )

𝑚 and 𝑣 𝑗 (𝑃) =
𝑣𝑗 (𝑆 )
𝑚

both hold.

Algorithm 1 𝐴𝑢𝑠𝑡𝑖𝑛𝐶𝑢𝑡 (𝑃𝑙𝑎𝑦𝑒𝑟1, 𝑃𝑙𝑎𝑦𝑒𝑟2,𝑚, 𝑆)
Require: 𝐴 = (𝐴1, 𝐴2, ...𝐴𝑚)
𝑖 = 0
𝑃𝑙𝑎𝑦𝑒𝑟1 marks 𝑆 into𝑚 equal pieces (according to 𝑣𝑖 ).
while 𝑆 is unallocated do

𝑖 = 𝑖 + 1
if ∃ piece 𝑃 s.t. 𝑣2 (𝑃) = 1/𝑚 then

𝐴𝑖 = 𝑃

else
Find adjacent pieces 𝐴, 𝐵 𝑠.𝑡 𝑣2 (𝐴) < 1/𝑚, 𝑣2 (𝐵) > 1/𝑚.
𝐶 = 𝐴 ∪ 𝐵
𝑙 = 𝑥 ⊲ x=left endpoint of 𝐶
𝑟 = 𝑦 ⊲ y=point s.t 𝑣1 ( [𝑙, 𝑟 ]) = 1/𝑚
while 𝑣2 ( [𝑙, 𝑟 ]) ≠ 1/𝑚 do

move 𝑙, 𝑟 𝑠 .𝑡 𝑙 < 𝑟, 𝑣1 ( [𝑙, 𝑦]) = 1/𝑚
⊲ By IVT, ∃𝑙, 𝑟 , 𝑣2 ( [𝑙, 𝑟 ]) = 1/𝑚

end while
𝐴𝑖 = [𝑙, 𝑟 ]
𝑆 = 𝑆\{𝐴𝑖 }

end if
end while

This procedure requires atmost 2(𝑚 − 1) cuts -𝑚 − 1 cuts when
𝑃𝑙𝑎𝑦𝑒𝑟1 marks 𝑆 into equal pieces, and atmost𝑚 − 1 more cuts (1

cut for every time the else block is called), since after𝑚 − 1 pieces
are allocated the last piece 𝑃 will have 𝑣 𝑗 (𝑃) = 1/𝑚.

3.2.2 Brams–Taylor–Zwicker procedure. It is a protocol ([6]) for
envy-free cake-cutting among 4 partners. The procedure is repre-
sented by an algorithm shown below. The run-time of the procedure
is, technically, infinite as Austin’s procedure cannot be discretized,
as it involves two knives moving continuously, resulting in an
infinite run-time. However, the number of cuts required for the
procedure is limited. Applying the Austin cut between 2 people to
obtain 4 pieces in Step A, for example, requires six cuts. Addition-
ally, Step B requires one cut, and Step C requires six more cuts,
summing up to 13 cuts. An advanced variant of the Brams-Taylor-
Zwicker procedure only requires up to 11 cuts. In Step B, WLOG
we let player 3 trim his best piece to create a tie with his second
best. We establish a ChooseOrder to ensure that the trimmed piece
either goes to player 3 or 4. Step C involves an Austin Cut of the
trimming 𝑇 with player 1 and the player out of 3 and 4 who didn’t
get the trimmed piece, into 4 more pieces. We then let the player
with trimmed piece choose first, since the remaining player 2 will
never envy it even if all of 𝑇 is given to him.

Algorithm 2 𝐵𝑇𝑍 (1, 2, 3, 4, 𝑆)
𝐴𝑢𝑠𝑡𝑖𝑛𝐶𝑢𝑡 (1, 2, 4, 𝑆) ⊲ Step A
𝑇 = 𝑇𝑟𝑖𝑚(3) ⊲ Step B: Player 3-two way tie for largest piece
𝐶ℎ𝑜𝑜𝑠𝑒𝑂𝑟𝑑𝑒𝑟 (4, 3, 2, 1, 𝑆\{𝑇 }) ⊲ Ensure 𝑇 → 3 𝑜𝑟 4
if 𝑇 → 3 then ⊲ Step C

𝐴𝑢𝑠𝑡𝑖𝑛𝐶𝑢𝑡 (4, 1, 4,𝑇 )
𝐶ℎ𝑜𝑜𝑠𝑒𝑂𝑟𝑑𝑒𝑟 (3, 2, 4, 1,𝑇 )

else
𝐴𝑢𝑠𝑡𝑖𝑛𝐶𝑢𝑡 (3, 1, 4,𝑇 )
𝐶ℎ𝑜𝑜𝑠𝑒𝑂𝑟𝑑𝑒𝑟 (4, 2, 3, 1,𝑇 )

end if

4 STRUCTURES
In this section, we provide cake-cutting procedures using the ideas
of Austin cut and BTZ [6] trimming procedure as described before
that satisfy network-envy-free property on the following structures:
(1) Binary Tree with an additional level 1 edge (2) Cycles (𝐶4,𝐶5,𝐶6)
and (3) clique (3 vertices) connected via a bridge. In addition, we
also provide the reader with the number of cuts required for each
of these structures. Finally, we close this section with a mention of
other miscellaneous structures for which we have a network-envy-
free procedure.

4.1 Binary Tree with an additional level 1 edge
• Step 1: Perform an Austin cut w.r.t two agents connected at
level 1 on the initial cake P to produce n pieces where n is
the number of agents. WLOG assume the agents performing
the Austin cut are A and B. As a result of the Austin cut, both
A and B value each of the above pieces equally according to
them.

• Step 2: Let R, the root agent of the tree(parent of A, B),
choose its most preferred piece and then let A choose its
best 𝑛𝐴 = 𝑛 − 2 pieces from the left 𝑛 − 1 pieces where 𝑛𝐴



Figure 1: Step1: Binary tree with an additional edge at level 1

represents the number of agents in the subtree of A. Give
the leftover piece to B.

• Step 3: Follow the same procedure[4] here onwards for the
usual tree structurewith agent A as the root and 𝑃 = ∪𝑖∈𝑛𝐴𝑃𝑖 .

Figure 2: Step2: Binary tree with an additional edge at level 1

4.2 Cycles
4.2.1 Length four cycle: 𝐶4.

• Step 1: Perform an Austin cut w.r.t any two agents who are
maximally separated (separated via maximum number of
edges) on the initial cake P to produce 4 pieces 𝑃1, 𝑃2, 𝑃3, 𝑃4.
WLOG assume the agents performing the Austin cut are A
and C. As a result of the Austin cut, both A and C value each
of the above pieces equally according to them.

• Step 2: Let B choose its most preferred piece and then let D
choose its most preferred piece among the remaining.

• Step 3: Finally, the two leftover pieces are arbitrarily allocated
to A and C.

4.2.2 Length five cycle: 𝐶5.

Phase 1:
• Step 1: Perform an Austin cut w.r.t any two agents who are
maximally separated (separated via maximum number of
edges) on the initial cake P to produce 5 pieces 𝑃1, 𝑃2, 𝑃3, 𝑃4,

Figure 3: Cake cutting procedure for 𝐶4

𝑃5. WLOG assume the agents performing the Austin cut are
A and C. As a result of the Austin cut, both A and C value
each of the above pieces equally according to them.

• Step 2: Let B choose its most preferred piece. WLOG assume
B picks 𝑃1.

• Step 3: Given the remaining four pieces, let either D or E
trim its most preferred piece to equate its valuation to its
second-best piece. This essentially creates a two-way tie
for the best piece for the agent making the trim just as in
the Selfridge-Conway procedure [7]. Assume that WLOG D
performs the trim on its most preferred piece 𝑃2 which gives
𝑇1,𝑇2, and consequently, according to D the valuation of 𝑇2
is equal to the valuation of 𝑃3(its second best preference).
Additionally, note that the trimmed piece𝑇1 is kept aside for
now and will be allocated later in the next phase.

• Step 4: Let E choose its most preferred piece among𝑇2, 𝑃3, 𝑃4,
𝑃5. If E chooses 𝑇2, then D gets 𝑃3, else, D gets 𝑇2. WLOG
assume D gets the trimmed piece.

• Step 5: Finally, the two leftover pieces are arbitrarily allocated
to A and C.

Figure 4: Cake cutting procedure for 𝐶5: Phase 1

After Phase 1, trimmed piece 𝑇1 remains to be allocated. However,
note that under the current interim allocation agents are network
envy-free of others’ pieces just as in the Brams-Taylor-Zwicker
procedure [6]. Additionally, we now have agent D who has been



allocated the trimmed piece. As a result of this, agent C(D’s neighbor
and one of the agents who performed the Austin cut in phase 1)
will never envy D even if the whole of 𝑇1 were allocated to it. This
change in envy structure w.r.t D (we call it the anchor agent) after
phase 1 helps us stop the further trimming of the trimmed piece 𝑇1
just as in again the Brams-Taylor-Zwicker procedure [6].

Phase 2:
• Step 1: Perform an Austin cut w.r.t agents B and E (Agents
who were not part of either the Austin cut or did not get
the trimmed piece 𝑇2) on the trimmed piece 𝑇1 to produce 5
pieces 𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5. As a result of the Austin cut, both
B and E value each of the above pieces equally according to
them.

• Step 2: Let A choose its most preferred piece. WLOG assume
A picks 𝑄1.

• Step 3: Given the remaining four pieces and the fact that D is
an anchor agent, we can let D choose its best pick and then
let agent C choose its best piece among the remaining.

• Step 4: Finally, the two leftover pieces are allocated to B and
E arbitrarily.

Figure 5: Cake cutting procedure for 𝐶5: Phase 2

4.3 Cliques connected via a bridge
4.3.1 Cliques with three vertices connected via a bridge.

Phase 1:
• Step 1: Perform an Austin cut w.r.t agents A and D (agents
part of the bridge) on the initial cake P to produce 6 pieces
𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6. As a result of the Austin cut, both A and
D value each of the above pieces equally according to them.

• Step 2: Given the six pieces, let either B or C trim its most
preferred piece to equate its valuation to its second-best
piece. This essentially creates a two-way tie for the best
piece for the agent making the trim just as in the Selfridge-
Conway procedure [7]. Assume that WLOG B performs the
trim on its most preferred piece 𝑃1 which gives 𝑇1,𝑇2, and
consequently, according to B the valuation of 𝑇2 is equal to
the valuation of 𝑃2(its second best preference). Additionally,
note that the trimmed piece𝑇1 is kept aside for now and will
be allocated later in the next phase.

• Step 3: Let C choose itsmost preferred piece among𝑇2, 𝑃2, 𝑃3,
𝑃4, 𝑃5, 𝑃6. If C chooses 𝑇2, then B gets 𝑃2, else, B gets 𝑇2.

• Let’s assume WLOG B gets 𝑇2 and C gets 𝑃2. The remaining
four pieces 𝑃3, 𝑃4, 𝑃5, 𝑃6 are now to be fully allocated among
A, D, E, and F such that the allocation is network-envy-free.
We do this on a case basis as explained below.

• Step 4: We consider the following three cases which are
exhaustive:

(1) Case 1: Top preferences of agents E and F among the
remaining pieces are different. In this case, we directly
allocate agents E and F their best choices, and the two
leftover pieces are allocated to A and D arbitrarily.

(2) Case 2: Top preferences of agents E and F among the
remaining pieces are the same (say 𝑃3), however, their
second most preferred piece is different. In this case, we
allocate 𝑃3 to agent A, allocate agents E and F their second
best choices, and the remaining piece is given to D.

(3) Case 3: Top two preferences of agents E and F among the
remaining pieces are the same (say 𝑃3, 𝑃4). In this case, we
perform an Austin cut w.r.t agent D and WLOG E (any
of E or F) on 𝑃3 ∪ 𝑃4 to produce two new pieces 𝐾1, 𝐾2.
As a result of the Austin cut, both D and E value each
of the above two pieces equally according to them. Next,
we let agent F choose its best pick with the other going
to E. Finally, the two leftover pieces 𝑃5, 𝑃6 are arbitrarily
allocated to A and D.

Figure 6: Cake cutting procedure for clique (3 vertices) con-
nected via a bridge: phase 1.

After Phase 1, trimmed piece 𝑇1 remains to be allocated. However,
note that under the current interim allocation, agents are network
envy-free of others’ pieces just as in the Brams-Taylor-Zwicker
procedure [6]. Additionally, we now have agent B who has been
allocated the trimmed piece. As a result of this, agent A(B’s neighbor
and one of the agents who performed the Austin cut in phase 1)
will never envy B even if the whole of 𝑇1 were allocated to it. This
change in envy structure w.r.t B (the anchor agent) after phase 1
helps us stop the further trimming of the trimmed piece 𝑇1 just as
in again the Brams-Taylor-Zwicker procedure [6].

Phase 2:
• Step 1: Perform an Austin cut w.r.t agents C and D on the
trimmed piece 𝑇1 to produce 6 pieces 𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5, 𝑄6.



Figure 7: Cake cutting procedure for clique (3 vertices) con-
nected via a bridge: phase 1 case 3.

As a result of the Austin cut, both C and D value each of the
above pieces equally according to them.

• Step 2: Given the six pieces and the fact that B is an anchor
agent, we can let B choose its best pick and then let agent A
choose its best piece among the remaining.

• Let’s assume WLOG B gets 𝑄1 and A gets 𝑄2. The remain-
ing four pieces 𝑄3, 𝑄4, 𝑄5, 𝑄6 are now to be fully allocated
among C, D, E, and F such that the allocation is network
envy-free. We do this on a case basis exactly as done in
phase 1.

Figure 8: Cake cutting procedure for clique (3 vertices) con-
nected via a bridge: phase 2.

4.4 Comparison of number of cuts required
Structures Number of cuts required in

worst case
𝐶4 6
𝐶5 17
𝐶6 108 (54 for each trim)

Cliques connected via
bridge

25

Tree with additional edge
at level1

𝑂 (𝑛2)

Figure 9: Cake cutting procedure for clique (3 vertices) con-
nected via a bridge: phase 2 case 2.

4.5 Other Miscellaneous structures
In addition to the above-described structures, we have procedures
that satisfy network-envy-freeness for the following structures as
well. However, we skip these due to space limitation.

Figure 10: Other Miscellaneous structures.

5 CONCLUSIONS
General algorithm for 𝐶𝑛 - For cycle networks, we have algorithms
upto 𝐶6.

Extensions to [4] - Our extension only added 1 edge. We currently
have an algorithm for adding leaf edges, but it involves wastage.

Other fairness notions - Proportionality is another popular notion
of fairness that is studied along with envy-freeness. It is weaker
and hence easier to obtain, but is harder to generalize over several
networks. Nevertheless, we can try to study and improve upon
current proportional and efficient algorithms. We can also try to
define and study other notions of networked fairness.
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6 APPENDIX
6.1 Cycles

Figure 11: Structure 𝐶6

6.1.1 Length six cycle: 𝐶6.

Phase 1:
• Step 1: Perform an Austin cut w.r.t any two agents who are
maximally separated (separated via maximum number of
edges) on the initial cake P to produce 6 pieces 𝑃1, 𝑃2, 𝑃3, 𝑃4,
𝑃5, 𝑃6. WLOG assume the agents performing the Austin cut
are A and D. As a result of the Austin cut, both A and D
value each of the above pieces equally according to them.

• Step 2: Given the six pieces, let either B or C trim its most
preferred piece to equate its valuation to its second-best
piece. This essentially creates a two-way tie for the best
piece for the agent making the trim just as in the Selfridge-
Conway procedure [7]. Assume that WLOG B performs the
trim on its most preferred piece 𝑃1 which gives 𝑇1,𝑇2, and
consequently, according to B the valuation of 𝑇2 is equal to
the valuation of 𝑃2(its second best preference). Additionally,
note that the trimmed piece𝑇1 is kept aside for now and will
be allocated later in the next phase.

• Step 3: Let C choose itsmost preferred piece among𝑇2, 𝑃2, 𝑃3,
𝑃4, 𝑃5, 𝑃6. If C chooses 𝑇2, then B gets 𝑃2, else, B gets 𝑇2.
Assume WLOG that B gets 𝑇2 and C gets 𝑃2.

• Step 4: Given the remaining four pieces, let either E or F
trim its most preferred piece to equate its valuation to its
second-best piece. This essentially creates a two-way tie

for the best piece for the agent making the trim just as in
the Selfridge-Conway procedure [7]. Assume that WLOG E
performs the trim on its most preferred piece 𝑃3 which gives
𝑇3,𝑇4, and consequently, according to E the valuation of 𝑇4
is equal to the valuation of 𝑃4(its second best preference).
Additionally, note that the trimmed piece𝑇3 is kept aside for
now and will be allocated later in the next phase.

• Step 5: Let F choose its most preferred piece among𝑇4, 𝑃4, 𝑃5,
𝑃6. If F chooses 𝑇4, then E gets 𝑃4, else, E gets 𝑇4. Assume
WLOG that F gets 𝑇4 and E gets 𝑃4.

• Step 6: Finally, the two leftover pieces are arbitrarily allocated
to A and D.

Figure 12: Structure 𝐶6: Phase 1

After Phase 1, trimmed piece 𝑇1 and 𝑇3 remain to be allocated.
However, note that under the current interim allocation agents are
network envy-free of others’ pieces just as in the Brams-Taylor-
Zwicker procedure [6]. Additionally, we now have agent B(F) as
anchor agent w.r.t A (neighbor and one of the agents who performed
the Austin cut in phase 1) for trimmed piece 𝑇1(𝑇3). As a result of
this, agent A will never envy B(F) even if the whole of 𝑇1(𝑇3) were
allocated to it. This change in envy structure w.r.t B(F) after phase
1 helps us stop the further trimming of the trimmed piece 𝑇1(𝑇3)
eventually.

Phase 2 for trimmed piece 𝑇1:
• Step 1: Perform an Austin cut w.r.t agents C and F on the
trimmed piece 𝑇1 to produce 6 pieces 𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑄5, 𝑄6.
As a result of the Austin cut, both C and F value each of the
above pieces equally according to them.

• Step 2: Given the six pieces and the fact that B is an anchor
agent, we can let B choose its best pick and then let agent A
choose its best piece among the remaining. WLOG assume
B chose 𝑄1 and A chose 𝑄2.

• Step 3: Given the remaining four pieces, let either D or E
trim its most preferred piece to equate its valuation to its
second-best piece. This essentially creates a two-way tie
for the best piece for the agent making the trim just as in
the Selfridge-Conway procedure [7]. Assume that WLOG D
performs the trim on its most preferred piece𝑄3 which gives
𝑇5,𝑇6, and consequently, according to D the valuation of 𝑇6
is equal to the valuation of 𝑄4(its second best preference).



Additionally, note that the trimmed piece𝑇5 is kept aside for
now and will be allocated later in the next phase.

• step 4: Let E choose itsmost preferred piece among𝑇6, 𝑄4, 𝑄5,
𝑄6. If E chooses 𝑇6, then D gets 𝑄4, else, D gets 𝑇6.

• Now there are two cases possible: (1) E gets the trimmed
piece 𝑇6 or (2) D gets it. Either way, we can proceed with
phase 2 step 5 below, however, the above cases become sig-
nificant for phase 3 which we cover shortly.

• Step 5: The two leftover pieces are arbitrarily allocated to C
and F.

Figure 13: Structure 𝐶6: Phase 2 for 𝑇1

Phase 3 for trimmed piece 𝑇5( 𝑇1 → 𝑇5: )
Case 1: D got the trimmed piece 𝑇6 in phase 2 for 𝑇1. After "Phase
2 for trimmed piece 𝑇1", trimmed piece 𝑇5 remains to be allocated.
However, note that under the current interim allocation agents are
network envy-free of others’ pieces just as in the Brams-Taylor-
Zwicker procedure [6]. Additionally, we nowhave agent B as anchor
agent w.r.t A (neighbor and one of the agents who performed the
Austin cut in phase 1) for trimmed piece 𝑇5 and agent D as anchor
agent w.r.t C (neighbor and one of the agents who performed the
Austin cut in phase 2) for trimmed piece𝑇5. As a result of this, agent
A(C) will never envy B(D) even if the whole of 𝑇5 were allocated to
it. This change in the envy structure of B and D helps us stop the
further trimming of the trimmed piece 𝑇5.

• Step 1: Perform an Austin cut w.r.t agents E and F on the
trimmed piece𝑇5 to produce 6 pieces 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6. As
a result of the Austin cut, both E and F value each of the
above pieces equally according to them.

• Step 2: The fact that D is an anchor agent w.r.t C and its
other neighbour is agent E which did the Austin cut, we can
let D choose its best pick. WLOG assume D picked 𝑅1.

• Since B is anchor agent w.r.t A, we can let it pick before A.
However, note B is not an anchor w.r.t C, thus, we resolve
the dispute between B and C on a case basis as described
below.

• Step 3: We consider the following three cases which are
exhaustive:

(1) Case 1: Top preferences of agents B and C among the
remaining pieces are different. In this case, we directly
allocate agents B and C their best choices, let A pick its

best choice among the remaining, and the two leftover
pieces are allocated to E and F arbitrarily.

(2) Case 2: Top preferences of agents B and C among the
remaining pieces are the same (say 𝑅2), however, their
second most preferred piece is different. In this case, we
allocate 𝑅2 to agent E, allocate agents B and C their second
best choices, then let A pick its best choice among the
remaining, and the leftover piece is allocated to F.

(3) Case 3: Top two preferences of agents B and C among the
remaining pieces are the same (say 𝑅2, 𝑅3). In this case, we
perform an Austin cut w.r.t agent C and D on 𝑅3 ∪ 𝑅2 to
produce two new pieces 𝐾1, 𝐾2. As a result of the Austin
cut, both C and D value each of the above two pieces
equally according to them. Next, we let agent B choose its
best pick with the other going to C. Finally, we let A pick
its best choice among the remaining, and the two leftover
pieces are allocated to E and F arbitrarily.

(4) Therefore, in the case where 𝑇6 went to D, 𝑇5 is fully allo-
cated without further trimming, while at the same time
ensuring network envy-freeness.

Figure 14: Structure 𝐶6: Phase 3 for trimmed piece 𝑇5: Case 1
(step 1 and 2)

Figure 15: Structure 𝐶6: Phase 3 for trimmed piece 𝑇5: Case 1:
Step 3: Sub-case 1



Figure 16: Structure 𝐶6: Phase 3 for trimmed piece 𝑇5: Case 1:
Step 3: Sub-case 2

Figure 17: Structure 𝐶6: Phase 3 for trimmed piece 𝑇5: Case 1:
Step 3: Sub-case 3

Figure 18: Structure 𝐶6: Phase 3 for trimmed piece 𝑇5: Case 2

Case 2: E got the trimmed piece 𝑇6 in phase 2 for 𝑇1. After "Phase
2 for trimmed piece 𝑇1", trimmed piece 𝑇5 remains to be allocated.
However, note that under the current interim allocation agents are
network envy-free of others’ pieces just as in the Brams-Taylor-
Zwicker procedure [6]. Additionally, we nowhave agent B as anchor
agent w.r.t A (neighbor and one of the agents who performed the
Austin cut in phase 1) for trimmed piece 𝑇5 and agent E as anchor
agent w.r.t F (neighbor and one of the agents who performed the

Austin cut in phase 2) for trimmed piece𝑇5. As a result of this, agent
A(F) will never envy B(E) even if the whole of 𝑇5 were allocated to
it. This change in the envy structure of B and E help us stop the
further trimming eventually.

• Step 1: Perform an Austin cut w.r.t agents B and E on the
trimmed piece𝑇5 to produce 6 pieces 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6. As
a result of the Austin cut, both B and E value each of the
above pieces equally according to them.

• Step 2: Given the six pieces, let either A or F trim its most
preferred piece to equate its valuation to its second-best
piece. This essentially creates a two-way tie for the best
piece for the agent making the trim just as in the Selfridge-
Conway procedure [7]. Assume that WLOG A performs the
trim on its most preferred piece 𝑅1 which gives 𝑇7,𝑇8, and
consequently, according to A the valuation of 𝑇8 is equal to
the valuation of 𝑅2(its second best preference). Additionally,
note that the trimmed piece𝑇7 is kept aside for now and will
be allocated later in the next phase.

• Step 3: Let F choose its most preferred piece among𝑇8, 𝑅2, 𝑅3,
𝑅4, 𝑅5, 𝑅6. If F chooses 𝑇8, then A gets 𝑅2, else, A gets 𝑇8.
WLOG F chooses 𝑅2 and A gets the trimmed piece.

• Step 4: Given the four remaining pieces, let either C or D
trim its most preferred piece to equate its valuation to its
second-best piece. This essentially creates a two-way tie
for the best piece for the agent making the trim just as in
the Selfridge-Conway procedure [7]. Assume that WLOG C
performs the trim on its most preferred piece 𝑅3 which gives
𝑇9,𝑇10, and consequently, according to C the valuation of𝑇10
is equal to the valuation of 𝑅4(its second best preference).
Additionally, note that the trimmed piece𝑇9 is kept aside for
now and will be allocated later in the next phase.

• Step 5: Let D choose itsmost preferred piece among𝑇10, 𝑅4, 𝑅5,
𝑅6. If D chooses 𝑇10, then C gets 𝑅4, else, C gets 𝑇10. WLOG
D chooses 𝑅5 and C gets the trimmed piece 𝑇10.

• Step 6: Finally, the two leftover pieces are arbitrarily allocated
to B and E.

Note that, for case 2 trimmed pieces𝑇7 and𝑇9 remain to be allocated.

Phase 4 for trimmed piece 𝑇7( 𝑇1 → 𝑇5 → 𝑇7: ) In addition to an-
chors B(w.r.t A) and E(w.r.t F), we now have a newly created anchor
agent A(w.r.t B) for trimmed 𝑇7.This stops the further trimming of
the trimmed piece 𝑇7.

• Step 1: Perform an Austin cut w.r.t C and E on the trimmed
piece𝑇7 to produce 6 pieces 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6. As a result of
the Austin cut, both E and C value each of the above pieces
equally according to them.

• Step 2: Let D choose its most preferred piece. WLOG assume
D picked 𝑆1.

• Step 3: The fact that B is an anchor agent w.r.t A and its other
neighbour is agent C which did the Austin cut, we can let B
choose its best pick. WLOG assume B picked 𝑆2.

• Now, note that A and F are not anchors w.r.t each other, thus,
we resolve the dispute between A and F on a case basis as
described below.

• Step 3: We consider the following three cases which are
exhaustive:



(1) Case 1: Top preferences of agents A and F among the
remaining pieces are different. In this case, we directly
allocate agents A and F their best choices, and the two
leftover pieces are allocated to E and C arbitrarily.

(2) Case 2: Top preferences of agents A and F among the
remaining pieces are the same (say 𝑆3), however, their
second most preferred piece is different. In this case, we
allocate 𝑆3 to agent C, allocate agents A and F their second
best choices, and the leftover piece is allocated to E.

(3) Case 3: Top two preferences of agents A and F among the
remaining pieces are the same (say 𝑆3, 𝑆4). In this case, we
perform an Austin cut w.r.t agent E and F on 𝑆3 ∪ 𝑆4 to
produce two new pieces 𝐿1, 𝐿2. As a result of the Austin cut,
both F and E value each of the above two pieces equally
according to them. Next, we let agent A choose its best pick
with the other going to F. Note that, we can let A choose its
best piece without worrying about agent B’s envy towards
A due to the fact that A is an anchor agent w.r.t B. Finally,
the two leftover pieces are arbitrarily allocated to E and C.

(4) Therefore, in the case where 𝑇6 went to E, 𝑇5 is fully allo-
cated without further trimming (𝑇1 → 𝑇5 → 𝑇7), while at
the same time ensuring network envy-freeness.

Phase 4 for trimmed piece 𝑇9( 𝑇1 → 𝑇5 → 𝑇9: ) In addition to an-
chors B(w.r.t A) and E(w.r.t F), we now have a newly created anchor
agent C(w.r.t B) for trimmed 𝑇9.This stops the further trimmed of
the trimmed piece 𝑇9.

• Step 1: Perform an Austin cut w.r.t D and F on the trimmed
piece𝑇9 to produce 6 pieces𝑈1,𝑈2,𝑈3,𝑈4,𝑈5,𝑈6. As a result
of the Austin cut, both D and F value each of the above pieces
equally according to them.

• Step 2: Let E choose its most preferred piece. WLOG assume
E picked𝑈1.

• Step 3: Because of the fact that C is an anchor w.r.t B and B
is an anchor w.r.t A, we can let C pick first, followed by B
and then A.

• Step 4: Finally, the two leftover pieces are arbitrarily allocated
to D and F.

• Therefore, in the case where𝑇6 went to E,𝑇5 is fully allocated
without further trimming(𝑇1 → 𝑇5 → 𝑇9), while at the same
time ensuring network envy-freeness.

With this, the Trimmed piece 𝑇1 from phase 1 is fully allocated
without trimming in addition to ensuring network envy-freeness.
We do the exact same procedure for 𝑇3, except with a different set
of anchor agents. We skip the procedure for this piece due to space
limitations and close the procedure here.
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