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Problem Statement

Multiarm Bandits
We have K groups of arms where each group has N arms. In each round,
we select a group and are randomly assigned one of the N arms in that
group. The identity and the reward corresponding to this arm are revealed
to us by the end of the round. The goal is to identify the group with the
highest mean reward (average across the N arms) subject to the constraint
that the minimum mean reward in the group exceeds a given threshold.
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General Successive Elimination

Player maintains an active set of arms ′S ′.

At every round player first samples from the reward distribution of
every arm in the active set.

Player then removes all arms in the active set with estimated rewards
that are outside the anytime confidence interval around the highest
estimated reward in active set.

When active set has 1 arm,the player identifies this arm with high
probability as the best arm.
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Algorithm

Successive Elimination({1, 2, 3..., n}, δ)
S ← {1, 2, 3..., n}
while 1 ≤ t ≤ ∞ do

Pull arms in S
S ← S − {i ∈ S ; ∃j ∈ S : µ̂j ,t − U(t, δn ) ≥ µ̂i ,t + U(t, δn )}
Stop when |S | = 1

end while
return S
end procedure
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Notation

S :Active set of arms

Estimated mean reward for arm i after t pulls: µ̂i ,t =
1
t

∑t
j=1 Xi ,j

U(t, δ) =Confidence bound IP({∪∞t=1|µ̂i ,t − µi | > U(t, δ)}) ≤ δ
With high probability these bounds hold for all time rather than
independently holding eith high probability at each time step
individually.
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Theorem 1

Show that w .p ≥ 1− δ Successive Elimination Identifies the best arm in
O(

∑n
i ̸=i∗ ∆

−2
i log(n.log(∆−2

i )) Samples.

Proof:To prove this we show w .p ≥ 1− δ

Arm with highest expected reward µ∗ will always remain in active set S.
All non optimal arms i with reward µi ≤ µ∗ will be dropped from S after
O(

∑n
i ̸=i∗ ∆

−2
i log(n.log(∆−2

i )) pulls.
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Lemma 1

Let Event E be the case that for any arm at anytime t,the estimated reward
µ̂i ,t is outside the confidence bound around true mean µi

E = ∪ni=1 ∪∞t=1 {|µ̂i ,t − µi | > U(t, δn )}
The Event will happen with IP(E) ≤ δ

Proof by Union Bound

IP(E) ≤
∑n

i=1 ∪∞t=1{|µ̂i ,t − µi | > U(t, δn )} ≤
∑n

i=1
δ
n ≤ n. δn ≤ δ

Puranjay Datta ,19D070048 Supervised Research Exposition 14-03-2022 7 / 18



Theorem 1:Part 1

With probability ≥ 1− δ, the best arm remians in the active set S until
termination.

Proof:Arm i will only be dropped from set S if ∃j s.t
µ̂j ,t − U(t, δn ) ≥ µ̂i ,t + U(t, δn )

Additionally when Ec holds we know that estimated rewards are always
within a confidence bound around the true mean and so
µj + U(t, δn ) ≥ µ̂j ,t and µj − U(t, δn ) ≤ µ̂i ,t

Plugging in the above equation =⇒ µj ≥ µi

Using Lemma 1 we have IP(Ec) ≥ 1− δ
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Theorem 1:Part 2

All non optimal arms i with reward µi ≤ µ∗ will be dropped from S after
O(

∑n
i ̸=i∗ ∆

−2
i log(n.log(∆−2

i )) pulls.

By the rules of Successive Elimination described above ,arm i will be
removed from the set S if
µ̂∗
t − U(t, δb ) ≥ µ̂i ,t + U(t, δn ) where µ̂∗

t is the estimated reward of the
arm with highest expected reward.

∴ if Ec holds estimated rewards are within the confidence bound
around true mean.

=⇒ µ̂∗
t ≥ µ∗ − U(t, δn ) and µ̂i ,t ≤ µi ,t + U(t, δn )

=⇒ µ∗ − 2U(t, δn ) ≥ µi + 2U(t, δn )

=⇒ ∆i ≥ 4U(t, δn )

By Solving minimum value of T we get

T ≤
∑n

i ̸=i∗ c .∆
−2
i log(

n.log(∆−2
i

δ ) for some c.
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Median Elimination Algorithm

Median Elimination({1, 2, 3..., n}, ϵ, δ)
S ← {1, 2, 3..., n}, ϵ1 = ϵ

4 , δ1 =
δ
2 , l = 1

while 1 ≤ l ≤ ∞ do
Sample every arm a in S for 1

(
ϵl
2
)2
log( 3

δl
)

Let pa denote its received reward
Find the median(ml) of received rewards pa of all arms a in S
ϵl+1 =

3
4ϵl ,δl+1 =

δl
4 , l = l + 1

Stop when |S | = 1
end while
return S
end procedure
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Theorem 1

Theorem 1: Median Elimination(ϵ, δ) is (ϵ, δ) PAC Algorithm with Average
Sample Complexity O( n

ϵ2
log(1δ )).

Lemma1: For every phase l in Meadian Elimination Algorithm where
IP(maxj∈Sl pj ≤ maxi∈Sl+1

pi + ϵl) ≥ 1− δl

Proof Lemma1:w .l .o.g consider l = 1

E1 :p̂1 ≤ p1 − ϵ
2 where arm 1 is the best arm at level l

IP(E1) ≤ δ1
3

In the case E1 does not hold ,calculate the probability that an arm j
which is not ϵ1 optimal arm is empirically better than best arm.

IP(p̂j ≥ p̂1|p̂1 ≥ p1 − ϵ1
2 ) ≤ IP(p̂j ≥ pj +

ϵ1
2 |p̂1 ≥ p1 − ϵ1

2 ) ≤
δ
3
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Lemma1 Proof Contd

Let the #bad be the number of arms which are not ϵ1 optimal but are
empirically better than the best arm.We have

E [#bad |p̂1 ≥ p1 − ϵ
2 ] ≤

nδ1
3

IP(#bad ≥ n
2 |p̂1 ≥ p1 − ϵ

2 ] ≤
nδ1
3
n
2

= 2δ1
3

Using Union Bound gives IP(Failure) ≤ δ1
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Lemma 2

Lemma 2: Sample Complexity is O( n
ϵ2
log(1δ )).∑log2(n)

l=1 nl
log( 3

δl
)

(ϵl
2
)2

= 4
∑log2(n)

l=1

n

2l−1 log(
2l .3
δ

)

(( 3
4
)l−1 ϵ

4
)2

≤ 64n log( 1
δ
)

ϵ2

∑log2(n)
l=1

8
9

l−1
(lC

′
+ C ) = O( n

ϵ2
log(1δ ))
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Theorem 1 proof contd

Proved Sample Complexity is O( n
ϵ2
log(1δ )).

Algorithm fails with probability δl in every round ,therefore∑log2(n)
l=1 δl ≤ δ

In each round we reduce the optimal reward of surviving arms by

atmost ϵl .Therefore total error is bounded by
∑log2(n)

l=1 ϵl ≤ ϵ
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Group Successive elimination Algorithm

E = ∪kj=1 ∪ni=1 ∪∞t=1{|µ̂j ,i ,t − µj ,i | > U(t, δ
nk )} where n:arms/group,

k:number of groups

IP(E) ≤ δ Using Union bound argument

A group will be dropped from the set if the following two events take
place

Event1:Sum of UCB’s of all the arms in the group is less than sum of
LCB’s of all the arms in some other group.

Event2:UCB of any arm in the group goes below the minimum
threshold specified.

We need to come up with another event in order to take care of a case
where some Group i is eliminated by Group j but group j has some
min violating arm but its UCB exceeds group i.Hence we come up with
following
Event3:Wait until the LCB of all the arms in the group is above the
specified threshold.
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Event 1

∑n
i=1{|µ̂j ,t − µj | > U(t, δ

nk )} ≥
∑n

i=1{|µ̂i ,t − µi | > U(t, δ
nk )}

Ec holds =⇒ µ̂j ,l ,t < µj ,l + U(t, δ
nk ) ∀l ∈ [1, n]

Ec holds =⇒ µ̂i ,l ,t > µi ,l − U(t, δ
nk ) ∀l ∈ [1, n]

=⇒
∑n

l=1 µj ,l >
∑n

l=1 µi ,l

Define ∆G ,i =
1
2n

∑n
l=1 µ∗,l − µi ,l

Sine we have
∑n

i=1{µ̂∗,l ,t − U(t, δ
nk )} ≥

∑n
i=1{µ̂i ,l ,t + U(t, δ

nk )}
and Ec holds we have
µ̂∗,l ,t ≥ µ∗,l − U(t, δ

nk ) and µ̂i ,l ,t ≤ µi ,l + U(t, δ
nk )

Plugging into the above equation we get ∆G ,i ≥ 4U(t, δn )

Ti ,1 ≤ c .∆−2
G ,i log(

nk.log(∆−2
G ,i )

δ )
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Event 2 & 3

µ̂i ,l ,t + U(t, δ
nk ) ≤ µth ∀i ∈ [1, k] , l ∈ [1, n]

If Ec holds =⇒ µ̂i ,l ,t ≥ µi ,l ,t − U(t, δ
nk ) =⇒ µi ,l ,t ≤ µth

If Ec holds
=⇒ µ̂i ,l ,t ≤ µi ,l ,t + U(t, δ

nk ) =⇒ 2U(t, δ
nk ) ≤ µth − µi ,l = ∆th,i ,l

Ti ,2 = minlc .∆
−2
th,i ,l log(

nk.log(∆−2
th,i,l )

δ )

Ti ,3 = maxlc .∆
−2
th,i ,l log(

nk.log(∆−2
th,i,l )

δ )

Ti = min(Ti ,2,max(Ti ,2,Ti ,3))
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Thank You!
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