

Online Learning with Stochastically Partitioning Experts

Sharayu Moharir¹ Jaya Prakash Champati² Puranjay Datta¹

¹Department of Electrical Engineering, IIT Bombay, India

²Computer Science Department, University of Victoria, Canada

Decision-Theoretic Online Learning (DTOL)

- N experts at the disposal of learner
- In round t, learner chooses a distribution p_t over the set of the experts
- Environment reveals loss vector \boldsymbol{l}_t
- Learner suffers loss $\langle \boldsymbol{p}_t, \boldsymbol{l}_t \rangle$
- Cumulative loss in T rounds:

$$L_T = \sum_{t=1}^{T} \langle m{p}_t, m{l}_t
angle$$
 for learner,

$$L_T(i) = \sum_{t=1}^{T} l_t(i)$$
 for expert i .

• Objective: minimize regret = $L_T - \min_i L_T(i)$

The celebrated Hedge algorithm achieves minimum achievable regret $O(\sqrt{T \log N})$.

Partitioning Experts: Variant of DTOL

Motivation Out-of-Distribution (OOD) Detection

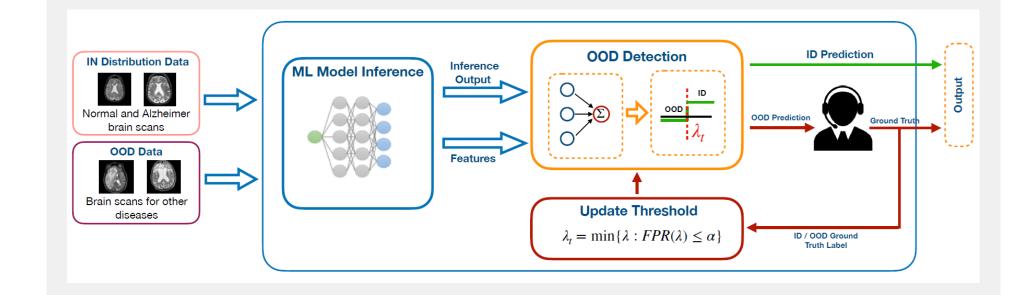


Figure 1. The threshold λ is updated online based on feedback.

Problem Formulation: Stochastically Partitioning Experts

Experts are partitions of a state space, revealed stochastically over time

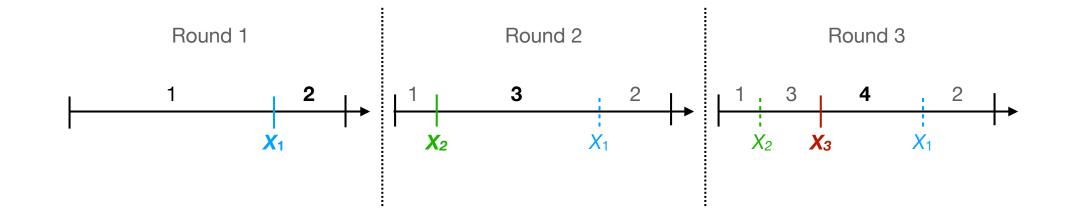


Figure 2. Stochastically Partitioning Experts in 1-D

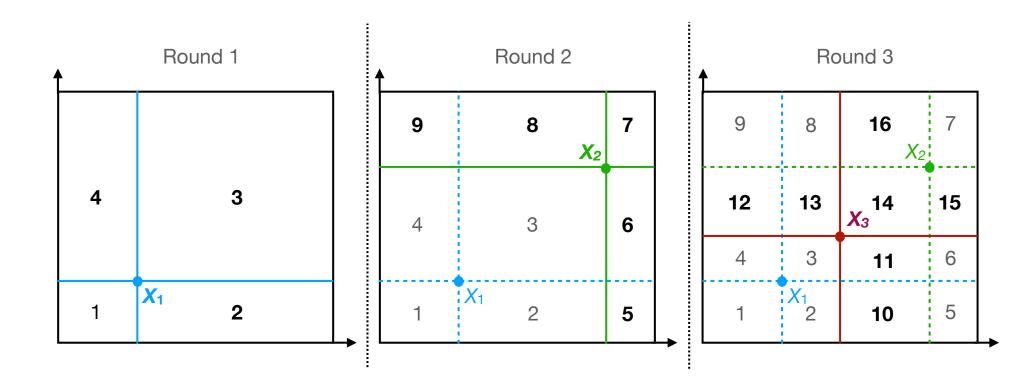


Figure 3. Stochastically Partitioning Experts in 2-D

- Assumption: Each new point X_t is drawn i.i.d.
- Algorithmic Challenge: Determine which expert to choose over time
- Goal: Minimize the total expected regret:

$$R_T = \mathbb{E}\left[L_T - \min_{i \in \mathcal{B}_T} \sum_{t=1}^T l_t(i)\right]$$

Algorithm 1: Hedge-G

An adaptation of Hedge for growing experts.

Initialize: $\mathcal{B}_0 = \{1\}, w_1 = 1, W_1 = 1.$

- 1. for t = 1, ..., T do
- 2. Draw X_t , reveal new partitions, update expert set \mathcal{B}_t .
- 3. For each new expert $i \in \mathcal{B}_t \setminus \mathcal{B}_{t-1}$, set initial weight $w_t(i) = e^{-\eta L_{t-1}(\mathsf{parent}(i))}$.
- 4. Update total weight $W_t \leftarrow W_t + \sum_{i \in \mathcal{B}_t \setminus \mathcal{B}_{t-1}} w_t(i)$.
- 5. Form prediction distribution: $p_t(i) = w_t(i)/W_t$.
- 6. Incur loss and update all weights: $w_{t+1}(i) = w_t(i)e^{-\eta l_t(i)}$.
- 7. end for

Regret Analysis of Hedge-G

Define
$$Y_t = \frac{\sum_{i=n_{t-1}+1}^{n_t} w_t(i)}{W_t} = \frac{\sum_{i=n_{t-1}+1}^{n_t} e^{-\eta L_{t-1}(i)}}{\sum_{j \in \mathcal{B}_{t-1}} e^{-\eta L_{t-1}(j)}}.$$

 Y_t is the ratio of cumulative weight of new experts to the cumulative weight of old experts

Lemmas:

- $P(X_t \in \text{partition } i) = \frac{1}{t^d}$ $\mathbb{E}[Y_t] \leq \frac{2^d}{t}$.

Theorem: Hedge-G Loss Bound

$$L_T \le L_T^* + \frac{T\eta}{8} + \frac{1}{\eta} \sum_{t=1}^T Y_t$$

Corollary: Hedge-G Loss Bound

• Expected Regret Guarantee: For $\eta \propto 1/\sqrt{T}$

$$R_T = O(\sqrt{2^d T \log T})$$

 Sample-Path Regret Guarantee: For $\eta \propto 1/\sqrt{T^{1-\epsilon}}$

$$\tilde{R}_T = O(\sqrt{2^d T^{1+\epsilon} \log T})$$

Limitations of Hedge-G

- 1. No learning rate η simultaneously achieves optimal expected regret and sample-path regret guarantees
- 2. Our solution: An adaptive version of Hedge-G using a doubling trick. It runs Hedge-G in segments, restarting with a new learning rate when the accumulated cost of new experts, $S = \sum Y_t$, exceeds a dynamic threshold.

Algorithm 2: AdaHedge-G

A variant of Hedge-G

Initialize: Segment cost $S \leftarrow 0$, threshold $b \leftarrow 2^d$.

- 1. for t = 1, ..., T do
- 2. Calculate Y_t .
- 3. if $S + Y_t > b$ then % Start new segment
- Reinitialize all weights to be uniform.
- Reset cost $S \leftarrow 0$, and double threshold $b \leftarrow 2b$.
- Update learning rate: $\eta \leftarrow \sqrt{8(b+d\log t)/T}$.
- 7. end if
- 8. $S \leftarrow S + Y_t$.
- 9. Use one step of Hedge-G with current η .
- 10. end for

Regret Analysis of AdaHedge-G

Recall that Y_t is the ratio of cumulative weight of new experts to the cumulative weight of old experts

Theorem: AdaHedge-G Loss Bound

$$L_T \le L_T^* + O\left(\sqrt{T\left(\sum_{t=1}^T Y_t + 1\right)}\right)$$

Corollary: AdaHedge-G Regret Bounds

- (i) Expected Regret: $R_T = O(\log(\log T)\sqrt{T\log T})$
- Sample-Path Regret: $R_T = O(\log T \sqrt{T \log T})$ with high probability.
 - The doubling trick improves the dependency on the new expert cost from linear to square-root, eliminating the trade-off in Hedge-G
 - AdaHedge-G simultaneously achieves near-optimal expected regret and a strong high-probability sample-path regret

Lower Bound and Optimality

We establish a lower bound on the regret for any algorithm in our setting by reducing it from the standard Prediction with Expert Advice problem.

Theorem: Lower Bound

$$R_T = \Omega(\sqrt{dT \log T})$$

AdaHedge-G is near-optimal, as its upper bound matches this lower bound up to a negligible $\log(\log T)$ factor.

References

- 1. Datta, P., Moharir, S., & Champati, J. P. (2024). Online Learning with Stochastically Partitioning Experts. ArXiv preprint.
- 2. Gofer, E., Cesa-Bianchi, N., Gentile, C., & Mansour, Y. (2013). Regret minimization for branching experts. In Conference on Learning Theory (COLT).
- 3. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences.