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Decision-Theoretic Online Learning
(DTOL)

= N experts at the disposal of learner

" |n round ¢, learner chooses a distribution p; over
the set of the experts

= Environment reveals loss vector [,
= Learner suffers loss (py, l;)
= Cumulative loss in T rounds:

T
Lt = Z<pt7lt> for learner,
t=1

T
Lp(i) = Z [;(7) for expert 1.

t=1
= Objective: minimize regret = Lp — min; Lp(1)

The celebrated Hedge algorithm achieves minimum
achievable regret O(/T log N).

Partitioning Experts: Variant of DTOL
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Figure 1. The threshold A is updated online based on feedback.

Problem Formulation:
Stochastically Partitioning Experts

Experts are partitons of a state space, revealed
stochastically over time
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Figure 3. Stochastically Partitioning Experts in 2-D

= Assumption: Each new point X, is drawn I.i.d.

= Algorithmic Challenge: Determine which expert
to choose over time

= Goal: Minimize the total expected regret:
] . .
Rp=E |Lp—min » (i)

€8
=1

Algorithm 1: Hedge-G

An adaptation of Hedge for growing experts.

Initialize: Bo = {1}, wy = 1, W1 = 1.

1. fort=1,...,T do

2. Draw X, reveal new partitions, update expert
set B;.

3. For each new experti € B; \ B;_1, set initial
weight wy(i) = e~ Li-1(parent(i))

4. Update total weight W, « W, + ZZ-EBt\Bt_l wy(1).
5. Form prediction distribution: ps(2) = wy(i) /W

6. Incur loss and update all weights:
Wy1(7) = wy(3)e M),

/. end for

Algorithm 2: AdaHedge-G

A variant of Hedge-G

Regret Analysis of Hedge-G

Define YV, = Z?int—l—l—l wt@) B Z?int_ﬁl e_nLt—l(i)
t — —

Wt ZjEBt_l e_nLt—l(j) .

Y; is the ratio of cumulative weight of new experts to
the cumulative weight of old experts

Lemmas:
1
" P(X; € partitioni) = -
2d
" ElY)] < 7

Theorem: Hedge-G Loss Bound

Corollary: Hedge-G Loss Bound

= Expected Regret Guarantee: Forn oc 1//T
Rr = O(/24T log T)
= Sample-Path Regret Guarantee: For

nocl/vVT1=¢
Ry = O(/24T < 1og T))

Limitations of Hedge-G

1. No learning rate n simultaneously achieves
optimal expected regret and sample-path regret
guarantees

2. Our solution: An adaptive version of Hedge-G
using a doubling trick. It runs Hedge-G in
segments, restarting with a new learning rate
when the accumulated cost of new experts,

S = >Y;, exceeds a dynamic threshold.
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Initialize: Segment cost S < 0, threshold b + 2¢.

1. fort=1,...,T do
2. Calculate Y.
3. ifS+Y, >bthen % Start new segment
4. Reinitialize all weights to be uniform.
5. Reset cost S «— 0, and double thresholad
b < 2b.
6. Update learning rate: n < /8(b+ dlogt)/T.
/. end if
8. 5+ 5S+Y.
9. Use one step of Hedge-G with current n.

10. end for

Regret Analysis of AdaHedge-G

Recall that Y; Is the ratio of cumulative weight of new
experts to the cumulative weight of old experts

Theorem: AdaHedge-G Loss Bound

Ly < L;+0O

\T<§1:Y2+1>

Corollary: AdaHedge-G Regret Bounds

(i) Expected Regret: Ry = O(log(log T')/T logT')
(i) Sample-Path Regret: Ry = O(logT'\/T logT)
with high probability.

= The doubling trick improves the dependency on
the new expert cost from linear to square-root,
eliminating the trade-off in Hedge-G

= AdaHedge-G simultaneously achieves
near-optimal expected regret and a strong
high-probability sample-path regret

Lower Bound and Optimality

We establish a lower bound on the regret for any al-
cgorithm in our setting by reducing it from the standard
Prediction with Expert Advice problem.

Theorem: Lower Bound

Ry = Q(+/dT log T)

AdaHedge-G is near-optimal, as its upper bound
matches this lower bound up to a negligible log(log T')
factor.
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