
Online Learning with Stochastically
Partitioning Experts

Puranjay Datta1 Sharayu Moharir1 Jaya Prakash Champati2

1Department of Electrical Engineering, IIT Bombay, India

2Computer Science Department, University of Victoria, Canada

Decision-Theoretic Online Learning
(DTOL)

N experts at the disposal of learner

In round t, learner chooses a distribution pppt over

the set of the experts

Environment reveals loss vector lllt

Learner suffers loss 〈pppt, lllt〉
Cumulative loss in T rounds:

LT =
T∑

t=1
〈pppt, lllt〉 for learner,

LT (i) =
T∑

t=1
lt(i) for expert i.

Objective: minimize regret = LT −mini LT (i)

The celebrated Hedge algorithm achieves minimum

achievable regret O(
√

T log N).

Partitioning Experts: Variant of DTOL

Motivation
Out-of-Distribution (OOD) Detection

Figure 1. The threshold λ is updated online based on feedback.

Problem Formulation:
Stochastically Partitioning Experts

Experts are partitions of a state space, revealed

stochastically over time

X1 X1X2 X1X2 X3

1 2 1 23 1 23 4

Round 1 Round 2 Round 3

Figure 2. Stochastically Partitioning Experts in 1-D

X1

X2

X3

X1 X1

X2

1 2

34

1 2

34

5

6

89 7

1 2

34

5

6

89 7

10

11

12 13 14 15

16

Round 1 Round 2 Round 3

Figure 3. Stochastically Partitioning Experts in 2-D

Assumption: Each new point Xt is drawn i.i.d.

Algorithmic Challenge: Determine which expert

to choose over time

Goal: Minimize the total expected regret:

RT = E

[
LT −min

i∈BT

T∑
t=1

lt(i)

]

Algorithm 1: Hedge-G

An adaptation of Hedge for growing experts.

Initialize: B0 = {1}, w1 = 1, W1 = 1.

1. for t = 1, . . . , T do

2. Draw Xt, reveal new partitions, update expert

set Bt.

3. For each new expert i ∈ Bt \ Bt−1, set initial

weight wt(i) = e−ηLt−1(parent(i)).

4. Update total weight Wt← Wt +
∑

i∈Bt\Bt−1
wt(i).

5. Form prediction distribution: pt(i) = wt(i)/Wt.

6. Incur loss and update all weights:

wt+1(i) = wt(i)e−ηlt(i).

7. end for

Regret Analysis of Hedge-G

Define Yt =
∑nt

i=nt−1+1 wt(i)
Wt

=
∑nt

i=nt−1+1 e−ηLt−1(i)∑
j∈Bt−1

e−ηLt−1(j) .

Yt is the ratio of cumulative weight of new experts to

the cumulative weight of old experts

Lemmas:

P (Xt ∈ partition i) = 1
td

E[Yt] ≤
2d

t
.

Theorem: Hedge-G Loss Bound

LT ≤ L∗T + Tη

8
+ 1

η

T∑
t=1

Yt

Corollary: Hedge-G Loss Bound

Expected Regret Guarantee: For η ∝ 1/
√

T

RT = O(
√

2dT log T )
Sample-Path Regret Guarantee: For

η ∝ 1/
√

T 1−ε

R̃T = O(
√

2dT 1+ε log T )

Limitations of Hedge-G

1. No learning rate η simultaneously achieves

optimal expected regret and sample-path regret

guarantees

2. Our solution: An adaptive version of Hedge-G

using a doubling trick. It runs Hedge-G in

segments, restarting with a new learning rate

when the accumulated cost of new experts,

S =
∑

Yt, exceeds a dynamic threshold.

Algorithm 2: AdaHedge-G

A variant of Hedge-G

Initialize: Segment cost S ← 0, threshold b← 2d.

1. for t = 1, . . . , T do

2. Calculate Yt.

3. if S + Yt > b then % Start new segment

4. Reinitialize all weights to be uniform.

5. Reset cost S ← 0, and double threshold

b← 2b.

6. Update learning rate: η ←
√

8(b + d log t)/T .

7. end if

8. S ← S + Yt.

9. Use one step of Hedge-G with current η.

10. end for

Regret Analysis of AdaHedge-G

Recall that Yt is the ratio of cumulative weight of new

experts to the cumulative weight of old experts

Theorem: AdaHedge-G Loss Bound

LT ≤ L∗T + O


√√√√T

(
T∑

t=1
Yt + 1

)

Corollary: AdaHedge-G Regret Bounds

(i) Expected Regret: RT = O(log(log T )
√

T log T )
(ii) Sample-Path Regret: R̃T = O(log T

√
T log T )

with high probability.

The doubling trick improves the dependency on

the new expert cost from linear to square-root,

eliminating the trade-off in Hedge-G

AdaHedge-G simultaneously achieves

near-optimal expected regret and a strong

high-probability sample-path regret

Lower Bound and Optimality

We establish a lower bound on the regret for any al-

gorithm in our setting by reducing it from the standard

Prediction with Expert Advice problem.

Theorem: Lower Bound

RT = Ω(
√

dT log T )

AdaHedge-G is near-optimal, as its upper bound

matches this lower bound up to a negligible log(log T )
factor.

References

1. Datta, P., Moharir, S., & Champati, J. P. (2024). Online Learning with Stochastically Partitioning Experts. ArXiv preprint.

2. Gofer, E., Cesa-Bianchi, N., Gentile, C., & Mansour, Y. (2013). Regret minimization for branching experts. In Conference on Learning Theory (COLT).

3. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences.


